(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍.
(B類)設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.
分析:(A類)(1)利用指數(shù)函數(shù)的圖象和性質(zhì)即可得函數(shù)g(x)所過定點(diǎn),代入函數(shù)f(x)的解析式即可求得a的值,(2)利用對(duì)數(shù)函數(shù)的定義和單調(diào)性解不等式即可,(3)將方程等價(jià)轉(zhuǎn)化為|2x-1|=2b,畫出函數(shù)y=|2x-1|的圖象,數(shù)形結(jié)合即可得b的范圍
(B類)(1)利用賦值法,令x=y=0,即可得f(0),(2)利用賦值法和奇函數(shù)定義,令y=-x,即可證明,(3)先計(jì)算出f(2)=2,再將不等式等價(jià)轉(zhuǎn)化為f(2a)>f(a+1),最后利用單調(diào)性解不等式即可
解答:A類:解:(1)∵函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A
∴A點(diǎn)的坐標(biāo)為(2,2)
又因?yàn)锳點(diǎn)在f(x)=log
3
(x+a)的圖象上,
∴2=log
3
(2+a)
即a+2=3
∴a=1                          
(2)∵不等式f(x)<log
3
a?log
3
(x+1)<log
3
1=0
?0<x+1<1
?-1<x<0         
∴不等式f(x)<log
3
a的解集為(-1,0)
(3)∵g(x)=2x-2+1
∴g(x+2)=2x+1
∴|g(x+2)-2|=2b?|2x+1-2|=2b?|2x-1|=2b
函數(shù)y=|2x-1|的圖象如圖1,
要使|g(x+2)-2|=2b有兩個(gè)不等實(shí)根
由圖象可知需0<2b<1,
故b的取值范圍為(0,
1
2
)            
B類:解:(1)令x=y=0
則f(0)=f(0)+f(0)
∴f(0)=0
(2)令y=-x
則f(0)=f(x)+f(-x)
∴f(-x)=-f(x)
所以f(x)為R上的奇函數(shù)                               
(3)令x=y=1
則f(1+1)=f(2)=f(1)+f(1)=2
∴f(2)=2
∴f(2a)>f(a-1)+2?f(2a)>f(a-1)+f(2)?f(2a)>f(a+1)
又∵f(x)是R上的增函數(shù),所以2a>a+1
即a>1
∴a的取值范圍為(1,+∞)
點(diǎn)評(píng):本題綜合考查了指數(shù)函數(shù)的圖象和性質(zhì),對(duì)數(shù)函數(shù)的圖象和性質(zhì),抽象表達(dá)式的意義,利用函數(shù)圖象和單調(diào)性解不等式等
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx其中常數(shù)a>0
(1)當(dāng)a>2時(shí),求函數(shù)f(x)在x∈(0,a)上的極大值和極小值;
(2)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,當(dāng)a=4時(shí),試問y=f(x)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭二模)已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),若函數(shù)y=f(x)-m有三個(gè)不同的零點(diǎn),求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)p(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,請(qǐng)你探究當(dāng)a=4時(shí),函數(shù)y=f(x)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=數(shù)學(xué)公式(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;       。2)解不等式f(x)<數(shù)學(xué)公式a;
(3)|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍.
(B類)設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;   (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍.
(B類)設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案