【題目】支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.有下列四個(gè)命題:
:恰有四支球隊(duì)并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;
:每支球隊(duì)都既有勝又有敗的概率為; :五支球隊(duì)成績(jī)并列第一名的概率為.
其中真命題是
A. ,, B. ,, C. .. D. ..
【答案】A
【解析】支球隊(duì)單循環(huán),共舉行場(chǎng)比賽,共有次勝次負(fù).由于以獲勝場(chǎng)次數(shù)作為球隊(duì)的成績(jī).就算四支球隊(duì)都勝場(chǎng),則第五支球隊(duì)也無(wú)法勝場(chǎng),若四支球隊(duì)都勝場(chǎng),則第五支球隊(duì)也勝場(chǎng),五支球隊(duì)并列第一,除此不會(huì)再有四支球隊(duì)勝場(chǎng)次數(shù)相同.故是真命題;會(huì)出現(xiàn)兩支球隊(duì)勝場(chǎng),剩下三支球隊(duì)中兩支球隊(duì)各勝場(chǎng),另一支球隊(duì)勝場(chǎng)的情況,此時(shí)兩支球隊(duì)并列第一名.故為真命題;由題可知球隊(duì)成績(jī)并列第一名,各勝一場(chǎng)的概率為小于.排除.故本題答案選.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, ),曲線(xiàn)在處的切線(xiàn)方程為.
(Ⅰ)求, 的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿(mǎn)足的常數(shù)為.令函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ),若是的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P﹣ABC中,PO⊥面ABC,垂足為O,若PA⊥BC,PC⊥AB,求證:
(1)AO⊥BC
(2)PB⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足: .
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
(3)若對(duì)任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,過(guò)左焦點(diǎn)F且垂直于x軸的直線(xiàn)與橢圓相交,所得弦長(zhǎng)為1,斜率為 ()的直線(xiàn)過(guò)點(diǎn),且與橢圓相交于不同的兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在點(diǎn),使得無(wú)論取何值, 為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)絡(luò)營(yíng)銷(xiāo)部門(mén)為了統(tǒng)計(jì)某市網(wǎng)友2016年12月12日的網(wǎng)購(gòu)情況,從該市當(dāng)天參與網(wǎng)購(gòu)的顧客中隨機(jī)抽查了男女各30人,統(tǒng)計(jì)其網(wǎng)購(gòu)金額,得到如下頻率分布直方圖:
網(wǎng)購(gòu)達(dá)人 | 非網(wǎng)購(gòu)達(dá)人 | 合計(jì) | |
男性 | 30 | ||
女性 | 12 | 30 | |
合計(jì) | 60 |
若網(wǎng)購(gòu)金額超過(guò)千元的顧客稱(chēng)為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)千元的顧客稱(chēng)為“非網(wǎng)購(gòu)達(dá)人”.
(Ⅰ)若抽取的“網(wǎng)購(gòu)達(dá)人”中女性占12人,請(qǐng)根據(jù)條件完成上面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購(gòu)達(dá)人”與性別有關(guān)?
(Ⅱ)該營(yíng)銷(xiāo)部門(mén)為了進(jìn)一步了解這名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法確定12人,若需從這12人中隨機(jī)選取人進(jìn)行問(wèn)卷調(diào)查.設(shè)為選取的人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.
(參考公式: ,其中)
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com