已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為


  1. A.
    (-2,+∞)
  2. B.
    (0,+∞)
  3. C.
    (1,+∞)
  4. D.
    (4,+∞)
B
分析:構(gòu)造函數(shù)g(x)=(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解
解答:∵y=f(x+2)為偶函數(shù),∴y=f(x+2)的圖象關(guān)于x=0對(duì)稱(chēng)
∴y=f(x)的圖象關(guān)于x=2對(duì)稱(chēng)
∴f(4)=f(0)
又∵f(4)=1,∴f(0)=1
設(shè)g(x)=(x∈R),則g′(x)==
又∵f′(x)<f(x),∴f′(x)-f(x)<0
∴g′(x)<0,∴y=g(x)在定義域上單調(diào)遞減
∵f(x)<ex
∴g(x)<1
又∵g(0)==1
∴g(x)<g(0)
∴x>0
故選B.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x)且y=f(x+1)為偶函數(shù),f(2)=1,則不等式f(x)<ex的解集為
(0,+∞)
(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x),且y=f(x+1)為偶函數(shù),f(2)=1,則不等式f(x)<ex的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照二模)已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)對(duì)任意x∈R都有f(x)=f(-x),且當(dāng)x≠0時(shí),有x•f′(x)<0,現(xiàn)設(shè)a=f(-sin32°),b=f(cos32°),則實(shí)數(shù)a,b的大小關(guān)系是
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿(mǎn)足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案