在△ABC中,求證:sin2A-sinB2-sinC2=-2cosA•sinB•sinC.
考點:余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:利用余弦定理列出關(guān)系式,再利用正弦定理化簡即可得證.
解答: 證明:∵cosA=
b2+c2-a2
2bc
,即a2=b2+c2-2bccosA,
∴利用正弦定理化簡得:sin2A=sin2B+sin2C-2sinB•sinC•cosA,
則sin2A-sinB2-sinC2=-2cosA•sinB•sinC.
點評:此題考查了正弦、余弦定理,熟練掌握定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

6人排成一排,A,B兩人之間必須有2人的排法有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
x2+5
x2-2
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|3m-1<x<2m},集合B={x|-1<x<3},若A?∁UB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1),函數(shù)f(x)=2(
a
+
b
)•
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,且b=2
2
,c=1,f(A)=
5
2
.求△ABC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8個“+”和6個“-”排成一列,則使符號改變?nèi)蔚呐欧ㄓ袔追N?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c為正實數(shù),θ∈(0,π).
(1)當a、b、c為△ABC的三邊長,且a、b、c所對的角分別為A、B、C.若a=
3
,c=1,且∠A=60°.求b的長;
(2)若a2=b2+c2-2bccosθ.試證明長為a、b、c的線段能構(gòu)成三角形,而且邊a的對角為θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=lg(
x2+1
-x)
,求其定義域,并判斷其奇偶性、單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x+θ)+cos(x+θ)的定義域為R.
(1)當θ=0時,求f(x)的單調(diào)遞增區(qū)間;
(2)若θ∈(0,π),且sinx≠0,當θ為何值時,f(x)為偶函數(shù)?

查看答案和解析>>

同步練習冊答案