已知有兩個(gè)極值點(diǎn)、,且在區(qū)間(0,1)上有極大值,無極小值,則實(shí)數(shù)的取值范圍是(    ) 
A.B.C.D.
A

試題分析:f′(x)=3x2-2ax+4,∵f(x)在區(qū)間(0,1)上有極大值,無極小值,
,即3-2a+4<0,解得,故選A。
點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的極值,遵循“求導(dǎo)數(shù),求駐點(diǎn),研究單調(diào)性,求極值”。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知e為自然對(duì)數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex-1)(x-1)k(k=1,2),則(  ).
A.當(dāng)k=1時(shí),f(x)在x=1處取到極小值
B.當(dāng)k=1時(shí),f(x)在x=1處取到極大值
C.當(dāng)k=2時(shí),f(x)在x=1處取到極小值
D.當(dāng)k=2時(shí),f(x)在x=1處取到極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(5分)已知函數(shù)在x=3時(shí)取得最小值,則a=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,函數(shù),若.
(1)求的值并求曲線在點(diǎn)處的切線方程;
(2)設(shè),求上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知時(shí)有極大值6,在時(shí)有極小值,求的值;并求在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若上的最大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù) 有(   )    
A.極小值-1,極大值1 B.極小值-2,極大值3
C.極小值-1,極大值3D.極小值-2,極大值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間的最大值為(    )
A.B.-1C.D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案