已知函數(shù)
(Ⅰ)若函數(shù)f(x)無零點,求實數(shù)m的取值范圍;
(Ⅱ)若函數(shù)f(x)在(-2,2)有且僅有一個零點,求實數(shù)m的取值范圍.
【答案】分析:(Ⅰ)令f(x)=0,原方程等價轉(zhuǎn)化為:,欲原方程無實根,考察下面兩種情況:①方程(1)無實數(shù)根,②方程(1)的實數(shù)根為原方程的增根,從而得出答案;
(Ⅱ)將原方程移項得x2-x+2=m,先畫出y=x2-x+2和y=m的圖象,通過觀察圖象的交點情況,從而得出函數(shù)f(x)在(-2,2)有且僅有一個零點,實數(shù)m的取值范圍.
解答:解:(Ⅰ)令f(x)=0得:
,
原方程可化為:
要原方程無實根,有下面兩種情況:
①方程(1)無實數(shù)根,由△=(-1)2-4(2-m)<0,得m<
②方程(1)的實數(shù)根為原方程的增根,原方程無實根,而原方程的增根為x=0或x=1,
把x=0或x=1分別代入(1)得m=2.
綜上所述:或m=2}
(Ⅱ)由x2-x+2-m=0得x2-x+2=m,先畫出y=x2-x+2和y=m的圖象,如圖,
觀察圖象可知,當m=或4≤m<8時,兩圖象只有一個交點,
若函數(shù)f(x)在(-2,2)有且僅有一個零點,實數(shù)m的取值范圍是:或4≤m<8}.
點評:本小題主要考查函數(shù)零點、根的存在性及根的個數(shù)判斷、方程式的解法等基礎知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請求對應的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本大題共14分)已知函數(shù)(為常數(shù)),若函數(shù)的最大值為.(1)求實數(shù)的值;(2)將函數(shù)的圖象向左平移個單位,再向下平移2個單位得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年四川省成都市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)=loga+bx) (a>0且a≠1),則下列敘述正確的是( )
A.若a=,b=-1,則函數(shù)f(x)為R上的增函數(shù)
B.若a=,b=-1,則函數(shù)f(x)為R上的減函數(shù)
C.若函數(shù)f(x)是定義在R上的偶函數(shù),則b=±1
D.若函數(shù)f(x)是定義在R上的奇函數(shù),則b=1

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(北京卷解析版) 題型:解答題

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)令,當時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

,即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

,即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

,即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為

所以在區(qū)間上的最大值為

 

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省杭州十四中2010屆高三11月月考(理) 題型:解答題

 已知函數(shù)(為常數(shù)),若函數(shù)的最大值為.

(1)求實數(shù)的值;

(2)將函數(shù)的圖象向左平移個單位,再向下平移2個單位得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案