已知兩定點E(-2,0),F(xiàn)(2,0),動點P滿足,由點P向x軸作垂線段PQ,垂足為Q,點M滿足,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,點N滿足(O為原點),求四邊形OANB面積的最大值,并求此時的直線l的方程.
【答案】分析:(Ⅰ)先求出點P的軌跡方程,再利用PM⊥x軸,點M滿足,確定P,M坐標之間的關系,即可求曲線C的方程;
(Ⅱ)求得四邊形OANB為平行四邊形,則SOANB=2S△OAB,表示出面積,利用基本不等式,即可求得最大值,從而可得直線l的方程.
解答:解:(Ⅰ)∵動點P滿足,∴點P的軌跡是以EF為直徑的圓
∵E(-2,0),F(xiàn)(2,0),
∴點P的軌跡方程x2+y2=4
設M(x,y)是曲線C上任一點,∵PM⊥x軸,點M滿足
∴P(x,2y)
∵點P的軌跡方程x2+y2=4
∴x2+4y2=4
∴求曲線C的方程是
(Ⅱ)∵,∴四邊形OANB為平行四邊形
當直線l的斜率不存在時,不符合題意;
當直線l的斜率存在時,設l:y=kx-2,l與橢圓交于A(x1,y1),B(x2,y2
直線方程代入橢圓方程,可得(1+4k2)x2-16kx+12=0
∴x1+x2=,
由△=256k2-48(1+4k2)>0,可得
|x1-x2|=|x1-x2|
∴SOANB=2S△OAB=2|x1-x2|==8
令k2=t,則,當t>,即4t-3>0時,由基本不等式,可得≥13,當且僅當,即t=時,取等號,此時滿足△>0
∴t=時,取得最小值
∴k=時,四邊形OANB面積的最大值為
所求直線l的方程為
點評:本題考查軌跡方程,考查代入法的運用,考查直線與橢圓的位置關系,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩定點E(-
2
,0),F(xiàn)(
2
,0),動點P滿足
PE
PF
=0,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PQ
=
2
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點,且坐標原點O到直線l的距離為
2
2
,求|AB|的最大值及對應的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩定點E(-
2
,0),F(xiàn)(
2
,0),動點P滿足
PE
PF
=0,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PQ
=
2
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點,且坐標原點O到直線l的距離為
2
2
,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲模擬)已知兩定點E(-2,0),F(xiàn)(2,0),動點P滿足
PE
PF
=0
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
PM
=
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,點N滿足
ON
=
OA
+
OB
(O為原點),求四邊形OANB面積的最大值,并求此時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:邯鄲模擬 題型:解答題

已知兩定點E(-2,0),F(xiàn)(2,0),動點P滿足
PE
PF
=0
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
PM
=
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,點N滿足
ON
=
OA
+
OB
(O為原點),求四邊形OANB面積的最大值,并求此時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩定點E(-
2
,0),F(xiàn)(
2
,0),動點P滿足
PE
PF
=0,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PQ
=
2
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點,且坐標原點O到直線l的距離為
2
2
,求|AB|的最大值及對應的直線l的方程.

查看答案和解析>>

同步練習冊答案