已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導(dǎo)函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關(guān)于x的方程f(x)=|f′(x)|;
(3)設(shè)函數(shù),求g(x)在x∈[2,4]時的最小值.
【答案】分析:(1)根據(jù)f(x)≤f'(x),可得x2-2x+1≤2a(1-x),分離參數(shù),確定右邊函數(shù)的最大值,即可求a的取值范圍;
(2)由f(x)=|f'(x)|,可得|x+a|=1+a或|x+a|=1-a,再分類討論,即可得到結(jié)論;
(3)由f(x)-f'(x)=(x-1)[x-(1-2a)],,對a進行分類討論,即可確定g(x)在x∈[2,4]時的最小值.
解答:解:(1)因為f(x)≤f'(x),所以x2-2x+1≤2a(1-x),
又因為-2≤x≤-1,所以在x∈[-2,-1]時恒成立,
因為,所以.…(4分)
(2)因為f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,則|x+a|=1+a或|x+a|=1-a. …(7分)
①當(dāng)a<-1時,|x+a|=1-a,所以a>b>c或x=1-2a;
②當(dāng)-1≤a≤1時,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③當(dāng)a>1時,|x+a|=1+a,所以x=1或x=-(1+2a).…(10分)
(3)因為f(x)-f'(x)=(x-1)[x-(1-2a)],
①若,則x∈[2,4]時,f(x)≥f'(x),所以g(x)=f'(x)=2x+2a,
從而g(x)的最小值為g(2)=2a+4;            …(12分)
②若,則x∈[2,4]時,f(x)<f'(x),所以g(x)=f(x)=x2+2ax+1,
當(dāng)時,g(x)的最小值為g(2)=4a+5,
當(dāng)-4<a<-2時,g(x)的最小值為g(-a)=1-a2,
當(dāng)a≤-4時,g(x)的最小值為g(4)=8a+17.…(14分)
③若,則x∈[2,4]時,
當(dāng)x∈[2,1-2a)時,g(x)最小值為g(2)=4a+5;
當(dāng)x∈[1-2a,4]時,g(x)最小值為g(1-2a)=2-2a.
因為,(4a+5)-(2-2a)=6a+3<0,
所以g(x)最小值為4a+5.
綜上所述,…(16分)
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的最值,考查恒成立問題,考查分類討論的數(shù)學(xué)思想,正確分類是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案