對于函數(shù)f(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式f(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)f(x),g(x)的分界線.已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)f(x)=ln(1+x)-mx,試探究函數(shù)f(x)與函數(shù)(0,+∞)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
解:(Ⅰ)f′(x)=e
x(ax+1+a),(2分)
當(dāng)a>0時,f′(x)>0?ax>-a-1,即x>-1-
,
函數(shù)f(x)在區(qū)間(-1-
,+∞)上是增函數(shù),
在區(qū)間(-∞,-1-
)上是減函數(shù);(3分)
當(dāng)a=0時,f′(x)>0,函數(shù)f(x)是區(qū)間(-∞,+∞)上的增函數(shù);(5分)
當(dāng)a<0時,f′(x)>0?ax>-a-1,即x<-1-
,
函數(shù)f(x)在區(qū)間(-∞,-1-
)上是增函數(shù),在區(qū)間(-1-
,+∞)上是減函數(shù).(7分)
(Ⅱ)若存在,則e
x(x+1)≥kx+m≥-x
2+2x+1恒成立,
令x=0,則1≥m≥1,
所以m=1,(9分)
因此:kx+1≥-x
2+2x+1恒成立,即x
2+(k-2)x≥0恒成立,
由△≤0得到:k=2,
現(xiàn)在只要判斷e
x(x+1)≥2x+1是否恒成立,(11分)
設(shè)∅(x)=e
x(x+1)-(2x+1),
因為:∅′(x)=e
x(x+2)-2,
當(dāng)x>0時,e
x>1,x+2>2,∅′(x)>0,
當(dāng)x<0時,e
x(x+2)<2e
x<2,∅′(x)<0,
所以∅(x)≥∅(0)=0,即e
x(x+1)≥2x+1恒成立,
所以函數(shù)f(x)與函數(shù)g(x)=-x
2+2x+1存在“分界線”.(14分)
分析:(Ⅰ)f′(x)=e
x(ax+1+a),當(dāng)a>0時,f′(x)>0?函數(shù)f(x)在區(qū)間(-1-
,+∞)上是增函數(shù),在區(qū)間(-∞,-1-
)上是減函數(shù);a=0時,f′(x)>0,函數(shù)f(x)是區(qū)間(-∞,+∞)上的增函數(shù);當(dāng)a<0時,f′(x)>0?ax>-a-1,函數(shù)f(x)在區(qū)間(-∞,-1-
)上是增函數(shù),在區(qū)間(-1-
,+∞)上是減函數(shù).
(Ⅱ)若存在,則e
x(x+1)≥kx+m≥-x
2+2x+1恒成立,令x=0,得m=1,因此x
2+(k-2)x≥0恒成立,由此及彼能推導(dǎo)出函數(shù)f(x)與函數(shù)g(x)=-x
2+2x+1存在“分界線”.
點評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的運用,解題時要注意導(dǎo)數(shù)公式的靈活運用,合理地運用導(dǎo)數(shù)的性質(zhì)解題.