橢圓C: 左右焦,若橢圓C上恰有4個不同的點P,使得為等腰三角形,則C的離心率的取值范圍是 _______
,)∪(,1)

試題分析:分兩種情況:第一種情況,當(dāng)點P與短軸的頂點重合時,△F1F2P構(gòu)成以F1F2為底邊的等腰三角形,此種情況有2個滿足條件的等腰△F1F2P;第二種情況,當(dāng)△F1F2P構(gòu)成以F1F2為一腰的等腰三角形時,以F2P作為等腰三角形的底邊為例,∵F1F2=F1P,∴點P在以F1為圓心,半徑為焦距2c的圓上,因此,當(dāng)以F1為圓心,半徑為2c的圓與橢圓C有2交點時,存在2個滿足條件的等腰△F1F2P,此時a-c<2c,解得a<3c,所以離心率e,當(dāng)e=時,△F1F2P是等邊三角形,與①中的三角形重復(fù),故e≠,同理,當(dāng)F1P為等腰三角形的底邊時,在e且e≠時也存在2個滿足條件的等腰△F1F2P這樣,又因為橢圓C上恰有4個不同的點P,使得為等腰三角形,故第一種情況不成立,綜上所述,離心率的取值范圍是:e∈(,)∪(,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準(zhǔn)線的方程是x=2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動點P滿足:=+2,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•山東)在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于A,B兩點,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點;
(ii)試問點B,G能否關(guān)于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩個焦點分別為,且點在橢圓C上,又.
(1)求焦點F2的軌跡的方程;
(2)若直線與曲線交于M、N兩點,以MN為直徑的圓經(jīng)過原點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖5,為坐標(biāo)原點,雙曲線和橢圓均過點,且以的兩個頂點和的兩個焦點為頂點的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得交于兩點,與只有一個公共點,且?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線 和橢圓,橢圓C的離心率為,連結(jié)橢圓的四個頂點形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個不同的交點,求實數(shù)m的取值范圍;
(3)當(dāng)時,設(shè)直線與y軸的交點為P,M為橢圓C上的動點,求線段PM長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動圓:,則圓心的軌跡是(   )
A.直線  B.圓 C.拋物線的一部分 D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,短軸一個端點到右焦點的距離為
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點,以弦為直徑的圓過坐標(biāo)原點,試探討點到直線的距離是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點為,點是橢圓上的一點,軸的交點恰為的中點, .
(1)求橢圓的方程;
(2)若點為橢圓的右頂點,過焦點的直線與橢圓交于不同的兩點,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案