設(shè)橢圓的兩個焦點是F1(-c,0)與F2(c,0)(c>0),且橢圓上存在點M,使.
(1)求實數(shù)m的取值范圍;
(2)若直線l:y=x+2與橢圓存在一個公共點E,使得|EF1|+|EF2|取得最小值,求此最小值及此時橢圓的方程;
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線l,與橢圓交于不同的兩點A,B,滿足,且使得過點Q,N(0,-1)兩點的直線NQ滿足?若存在,求出k的取值范圍;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
x2 |
2 |
OA |
OB |
2 |
3 |
OA |
OB |
2 |
3 |
3 |
4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
p |
2 |
x2 |
a2 |
y2 |
b2 |
θ |
2 |
1 |
|AF| |
1 |
p |
1 |
|BF| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P.
(1)試用a表示點P的坐標;
(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;
(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個. 設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省臺州中學高三(上)第二次統(tǒng)練數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省臺州中學(上)第二次統(tǒng)練數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com