【題目】要制作一個如圖的框架(單位:米).要求所圍成的總面積為19.5(),其中是一個矩形, 是一個等腰梯形,梯形高, ,設(shè)米, 米.
(1)求關(guān)于的表達式;
(2)如何設(shè)計, 的長度,才能使所用材料最少?
科目:高中數(shù)學 來源: 題型:
【題目】學校為了解學生的數(shù)學學習情況,在全校高一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡數(shù)學 | 不喜歡數(shù)學 | 合計 | |
男生 | 60 | 20 | 80 |
女生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“男生和女生在喜歡數(shù)學方面有差異”;
(2)在被調(diào)查的女生中抽出5名,其中2名喜歡數(shù)學,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡數(shù)學的概率.
附:參考公式:K2= ,其中n=a+b+c+d
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個棱錐的側(cè)棱長都相等,那么這個棱錐( )
A.一定是正棱錐
B.一定不是正棱錐
C.是底面為圓內(nèi)接多邊形的棱錐
D.是底面為圓外切多邊形的棱錐
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD﹣A1B1C1D1為正方體,下面結(jié)論錯誤的序號是 .
①BD∥平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;
④異面直線AD與CB1所成角為60°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,離心率等于 ,它的一個短軸端點恰好是拋物線x2=8 y的焦點.
(1)求橢圓C的方程;
(2)已知P(2,m)、Q(2,﹣m)(m>0)是橢圓上的兩點,A,B是橢圓上位于直線PQ兩側(cè)的動點,
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:==,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若兩條異面直線所成的角為90°,則稱這對異面直線為“理想異面直線對”,在連接正方體各頂點的所有直線中,“理想異面直線對”的對數(shù)為( )
A.24
B.48
C.72
D.78
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的非負半軸為極軸建立極坐標系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標方程為,直線與曲線交于兩點,與軸交于點.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com