精英家教網 > 高中數學 > 題目詳情
中心在原點,焦點在x軸上的一個橢圓與一雙曲線有共同的焦點F1,F2,且,橢圓的長半軸與雙曲線的實半軸之差為4,離心率之比為3:7.求這兩條曲線的方程.
【答案】分析:首先根據焦點分別在x軸、y軸上進行分類,不妨先設焦點在x軸上的橢圓、雙曲線的標準方程,然后根據題意與橢圓、雙曲線的性質列方程組,再解方程組求得焦點在x軸上的橢圓、雙曲線的標準方程,最后把焦點在y軸上的橢圓、雙曲線的標準方程補充上即可.
解答:解:設橢圓的方程為,雙曲線得方程為,半焦距c=
由已知得:a1-a2=4,
解得:a1=7,a2=3;所以:b12=36,b22=4,
所以兩條曲線的方程分別為:,
點評:本題主要考查橢圓、雙曲線的標準方程和幾何性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓w的中心在原點,焦點在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點A,B在橢圓w上,C在直線l:y=x+2上,且AB∥l.
(1)求橢圓w的方程;
(2)當AB邊通過坐標原點O時,求AB的長及△ABC的面積;
(3)當∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,函數y=f(x)的圖象是中心在原點、焦點在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為( 。
A、{x|-
2
<x<0或
2
<x≤2}
B、{x|-2≤x<-
2
2
<x≤2}
C、{x|-2≤x<-
2
2
2
2
<x≤2}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,函數y=f(x)的圖象是中心在原點,焦點在x軸上的橢圓的兩段弧,則不等式f(x)<f(-x)+x的解集為( 。
A、{
2
2
<x≤2
2
2
<x≤2
}
B、{x|-2≤x<
2
2
<x≤2}
C、{x|-
2
<x<0
2
<x≤2
}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中數學 來源:2010-2011年山西省孝義市高二第二次月考考試數學文卷 題型:解答題

(12分)

    已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過橢圓左頂點作直線l垂直于x軸,若動點M到橢圓右焦點的距離比它到直線l的距離小4,求點M的軌跡方程.

 

查看答案和解析>>

科目:高中數學 來源:東城區(qū)模擬 題型:解答題

已知橢圓w的中心在原點,焦點在x軸上,長軸長為4,離心率為
6
3
,△ABC的頂點A,B在橢圓w上,C在直線l:y=x+2上,且ABl.
(1)求橢圓w的方程;
(2)當AB邊通過坐標原點O時,求AB的長及△ABC的面積;
(3)當∠ABC=90°,且斜邊AC的長最大時,求AB所在直線的方程.

查看答案和解析>>

同步練習冊答案