如果{an}為遞增數(shù)列,則{an}的通項(xiàng)公式可以為( 。
A、an=-2n+3
B、an=n2-3n+1
C、an=
1
2n
D、an=1+log2n
分析:把每個(gè)數(shù)列的通項(xiàng)公式看關(guān)于做n的函數(shù),利用函數(shù)的單調(diào)性判斷數(shù)列的單調(diào)性即可.
解答:解:A選項(xiàng)是n的一次函數(shù),一次系數(shù)為-1∴為遞減數(shù)列
B選項(xiàng)是n的二次函數(shù),且對(duì)稱(chēng)軸為n=
3
2
∴第一,二項(xiàng)相同.
C是n的指數(shù)函數(shù),且底數(shù)為
1
2
,是遞減數(shù)列
D是n的對(duì)數(shù)函數(shù),且底數(shù)為2,是遞增函數(shù).
故選D
點(diǎn)評(píng):本題考查了數(shù)列的函數(shù)特性,注意每種函數(shù)的單調(diào)性的判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和Sn=
n2
•a
;
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n0和B表示它的“兌換系數(shù)”;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列bn的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列bn是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省廈門(mén)市思明區(qū)科技中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和;
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n(n≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省廈門(mén)市思明區(qū)科技中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和;
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n(n≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新課標(biāo)高三(上)數(shù)學(xué)一輪復(fù)習(xí)單元驗(yàn)收5(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和;
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n(n≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案