【題目】如圖為某兒童游樂(lè)場(chǎng)一個(gè)小型摩天輪示意圖,該摩天輪近似看作半徑為的圓,圓上最低點(diǎn)A與地面距離為,摩天輪每60秒勻速轉(zhuǎn)動(dòng)一圈,摩天輪上某點(diǎn)B的起始位置在最低點(diǎn)A處.圖中與地面垂直,以為始邊,逆時(shí)針轉(zhuǎn)動(dòng)角到,設(shè)B點(diǎn)與地面間的距離為.
(1)求h與間關(guān)系的函數(shù)解析式;
(2)設(shè)從開(kāi)始轉(zhuǎn)動(dòng),經(jīng)過(guò)t秒后到達(dá),求h與t之間的函數(shù)關(guān)系式;
(3)如果離地面高度不低于才能獲得最佳觀景效果,在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間B點(diǎn)在最佳觀景效果高度?
【答案】(1);(2),;(3)20秒
【解析】
(1)由題意,以圓心O為原點(diǎn),建立平面之間坐標(biāo)系則以為始邊,為終邊的角為,,再根據(jù)實(shí)際情況列出高度,即為函數(shù)關(guān)系式;
(2)根據(jù)題意,列出角速度,進(jìn)而列出t秒轉(zhuǎn)過(guò)的弧度數(shù)為,即可求解;
(3)由(2)問(wèn)中解析式,計(jì)算三角函數(shù)不等式,解得的范圍長(zhǎng)度,即為觀景最佳時(shí)間.
(1) 以圓心O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,
則以為始邊,為終邊的角為,
故點(diǎn)B的坐標(biāo)為,
.
(2)點(diǎn)A在圓上轉(zhuǎn)動(dòng)的角速度是,故t秒轉(zhuǎn)過(guò)的弧度數(shù)為,
,.
(3)由
得,
,
故轉(zhuǎn)動(dòng)一圈最佳觀景效果持續(xù)的時(shí)間為20秒
答:一個(gè)周期內(nèi)B點(diǎn)在最佳觀賞效果高度持續(xù)的時(shí)間為20秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視節(jié)目為選拔出現(xiàn)場(chǎng)錄制嘉賓,在眾多候選人中隨機(jī)抽取100名選手,按選手身高分組,得到的頻率分布表如圖所示.
(1)請(qǐng)補(bǔ)充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 0.350 | ||
第3組 | 30 | ||
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計(jì) | 100 | 1.00 |
(2)為選拔出舞臺(tái)嘉賓,決定在第3、4、5組中用分層抽樣抽取6人上臺(tái),求第3、4、5組每組各抽取多少人?
(3)求選手的身高平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從原點(diǎn)向圓 作兩條切線,切點(diǎn)分別為,,記切線,的斜率分別為,.
(Ⅰ)若圓心,求兩切線,的方程;
(Ⅱ)若,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若.
(1)討論的單調(diào)性;
(2)若對(duì)任意,關(guān)于的不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面,平面平面.
(Ⅰ)證明:平面;
(Ⅱ)若底面為矩形,,為的中點(diǎn),,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若,求直線被曲線截得的線段的長(zhǎng)度;
(Ⅱ)若,在曲線上求一點(diǎn),使得點(diǎn)到直線的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)求過(guò)點(diǎn)A(2,6)且在兩坐標(biāo)軸上的截距相等的直線m的方程;
(Ⅱ)求過(guò)點(diǎn)A(2,6)且被圓C:(x﹣3)2+(y﹣4)2=4截得的弦長(zhǎng)為的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬(wàn)噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象先向右平移個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,則函數(shù)的( )
A.周期是B.增區(qū)間是
C.圖象關(guān)于點(diǎn)對(duì)稱D.圖象關(guān)于直線對(duì)稱
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com