對(duì)于a,b∈R,記max{a,b}=
b   a<b
a   a≥b
,若函數(shù)f(x)=max{
1
2
x,|x-1|}
,其中x∈R,則f(x)的最小值為
1
3
1
3
分析:根據(jù)兩個(gè)式子比較大小和絕對(duì)值的意義,將f(x)化簡(jiǎn)成分段函數(shù)的形式,可得f(x)單調(diào)性,由此即可求得函數(shù)f(x)的最小值.
解答:解:由
1
2
x
=|x-1|得,3x2-8x+4=0,解得x=
2
3
或2,
當(dāng)x≤
2
3
或x≥2時(shí),|x-1|≥
1
2
x
,
當(dāng)
2
3
<x<2時(shí),|x-1|<
1
2
x

∴由定義得,f(x)=
1
2
x     
2
3
<x<2
|x-1|     x≤
2
3
或x≥2
=
1
2
x     
2
3
<x<2
1-x    x≤
2
3
x-1     x≥2
,
∴f(x)在(-∞,
2
3
)上是減函數(shù);在(
2
3
,2),(2,+∞)上是增函數(shù),
則函數(shù)f(x)的最小值為f(
2
3
)=1-
2
3
=
1
3
,
故答案為:
1
3
點(diǎn)評(píng):本題給出特殊定義,求函數(shù)f(x)的最小值,著重考查了實(shí)數(shù)比較大小、絕對(duì)值的意義和分段函數(shù)的處理等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當(dāng)a=c=0,b=
34
時(shí),求M的值;
(Ⅱ)當(dāng)a,b,c取遍所有實(shí)數(shù)時(shí),求M的最小值.
(以下結(jié)論可供參考:對(duì)于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當(dāng)且僅當(dāng)a,b,c,d同號(hào)時(shí)取等號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)對(duì)于正整數(shù)a,b,存在唯一一對(duì)整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當(dāng)r=0時(shí),稱b能整除a,記作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(Ⅱ)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對(duì)任意的整數(shù)x1,x2∈A,若|x1-x2|∈{1,2,3},則f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的個(gè)數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”.求最大的m∈A,使含m的集合A的有12個(gè)元素的任意子集為“和諧集”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時(shí),f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當(dāng)a=c=0,b=
3
4
時(shí),求M的值;
(Ⅱ)當(dāng)a,b,c取遍所有實(shí)數(shù)時(shí),求M的最小值.
(以下結(jié)論可供參考:對(duì)于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當(dāng)且僅當(dāng)a,b,c,d同號(hào)時(shí)取等號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省杭州二中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當(dāng)時(shí),求M的值;
(Ⅱ)當(dāng)a,b,c取遍所有實(shí)數(shù)時(shí),求M的最小值.
(以下結(jié)論可供參考:對(duì)于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當(dāng)且僅當(dāng)a,b,c,d同號(hào)時(shí)取等號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案