已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點A,并與橢圓C交與不同的兩點P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點,則橢圓的離心率為( 。
分析:連接OA,PF1,則OA⊥PQ,PF1⊥PQ,因為A為線段PQ的靠近P的三等分點,所以A為線段PA的中點,于是PF1=2b.結(jié)合橢圓的定義有PF2=2a-2b,由此能求出橢圓的離心率.
解答:解:連接OA,PF1
則OA⊥PQ,又PF1⊥PQ,可得OA∥PF1
因為A為線段PQ的靠近P的三等分點,所以A為線段PF2的中點,
于是PF1=2b.
結(jié)合橢圓的定義有PF2=2a-2b,
在直角三角形PF1F2中,
利用勾股定理得(2a-2b)2+(2b)2=(2c)2,
將c2=a2-b2代入,
整理可得b=
2
3
a,
于是e=
c
a
=
a2-b2
a
=
a2-
4
9
a2
a
=
5
3

故選C.
點評:離心率問題是解析幾何的重點內(nèi)容,各省考查頻率相當高,往往融橢圓、雙曲線的定義與平面幾何的性質(zhì)與一體,能夠較好的考查學生的思維層次,備受命題專家的青睞.此題結(jié)合圓、橢圓、切線等知識,含金量高.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案