9.在等差數(shù)列{an}中,Sn為它的前n項和,若a1>0,S16>0,S17<0,則當Sn最大時,n的值為( 。
A.7B.8C.9D.10

分析 根據(jù)所給的等差數(shù)列的S16>0且S17<0,根據(jù)等差數(shù)列的前n項和公式,看出第9項小于0,第8項和第9項的和大于0,得到第8項大于0,這樣前8項的和最大.

解答 解:∵等差數(shù)列{an}中,S16>0且S17<0,
即S16=$\frac{16{(a}_{1}+{a}_{16})}{2}=8({a}_{8}+{a}_{9})>0$,
S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9<0,
∴a8+a9>0,a9<0,
∴a8>0,
∴數(shù)列的前8項和最大.
故答案為:8.

點評 本題考查等差數(shù)列的性質(zhì)和前n項和,以及等差數(shù)列的性質(zhì),解題的關鍵是熟練運用等差數(shù)列的性質(zhì)得出已知數(shù)列的項的正負.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}}$,的圖象上存在不同的兩點A,B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知命題p:雙曲線$\frac{y^2}{5}-\frac{x^2}{m}$=1的離心率$e∈(\frac{{\sqrt{6}}}{2},\sqrt{2})$,命題q:方程$\frac{x^2}{2m}+\frac{y^2}{9-m}$=1表示焦點在x軸上的橢圓,若“p或q”為真命題,“p且q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若拋物線y2=8x上有一點P,它到焦點的距離為20,則P點的橫坐標為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=2an+3,數(shù)列{bn}中,b1=1,且點(bn+1,bn)在直線y=x-1上.
(Ⅰ) 求數(shù)列{an}的通項公式;     
(Ⅱ)求數(shù)列{bn}的通項公式;
(Ⅲ)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)$f(x)=cos(3x+\frac{5π}{2})$,滿足$\frac{f({x}_{i})}{{x}_{i}}=m$,其中${x}_{i}∈[-2π,2π],i=1,2,…,n,n∈{N}^{*}$,則n的最大值為( 。
A.13B.12C.10D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相同的單位長度,已知直線I的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$(t為參數(shù)),圓C的極坐標方程為ρ=2,點P關于極點對稱的點P'QUOTE p?的極坐標為$(\sqrt{2},\frac{5π}{4})$(1)寫出圓C的直角坐標方程及點P的極坐標;
(2)設直線I與圓C相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設X-B(10,0.8),則D(2X+1)等于( 。
A.1.6B.3.2C.6.4D.12.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在△ABC中,∠ABC=90°,以AB為直徑的圓交AC于點E,過點E作圓O的切線交BC于點F.
(1)求證:BC=2EF;
(2)若CE=3OA,求∠EFB的大。

查看答案和解析>>

同步練習冊答案