精英家教網 > 高中數學 > 題目詳情

(本小題滿分15分) 已知動圓過定點,且與直線相切,橢圓 的對稱軸為坐標軸,一個焦點是,點在橢圓上.

(Ⅰ)求動圓圓心的軌跡的方程及其橢圓的方程;

(Ⅱ)若動直線與軌跡處的切線平行,且直線與橢圓交于兩點,問:是否存在著這樣的直線使得的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.

 

【答案】

(Ⅰ)軌跡的方程,橢圓的方程為.(Ⅱ)的面積等于的直線不存在.

【解析】

試題分析:(Ⅰ)設過圓心作直線直線的垂線,垂足為,由題意得,即動點到定點的距離與到定直線的距離相等.由拋物線的定義知,點的軌跡為以為焦點,直線為準線的拋物線,其方程為. ------3分

設橢圓方程為,將點代入方程得,

整理得,解得(舍去).

故所求橢圓的方程為.------------------------6分

(Ⅱ)軌跡的方程為,則,---------------7分

所以軌跡處的切線的斜率為,故直線的斜率為, 假設符合題意的直線方程為. --------8分

代入橢圓方程化簡得,設,,,-----------------9分

,------------------------10分

又點到直線的距離是, --------------------11分

-------------------13分

當且僅當,即取得等號(滿足).--------------14分

此時的面積等于,

所以的面積等于的直線不存在.--------------15分

考點:橢圓的簡單性質;圓的簡單性質;軌跡方程的求法;直線與橢圓的綜合應用。

點評:求軌跡方程的一般方法:直接法、定義法、相關點法、參數法、交軌法、向量法等。本題求軌跡方程用到的是定義法。用定義法求軌跡方程的關鍵是條件的轉化——轉化成某一已知曲線的定義條件。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年福建省高三上學期期中理科數學試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(ⅰ)若不等式對任意的恒成立,求實數的取值范圍;

(ⅱ)若是兩個不相等的正數,且,求證:

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省高三下學期3月聯考理科數學 題型:解答題

(本小題滿分15分).

已知分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年浙江省高三上學期第三次月考數學文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數學 來源:2014屆浙江省寧波市高一上學期期末考試數學 題型:解答題

(本小題滿分15分)若函數在定義域內存在區(qū)間,滿足上的值域為,則稱這樣的函數為“優(yōu)美函數”.

(Ⅰ)判斷函數是否為“優(yōu)美函數”?若是,求出;若不是,說明理由;

(Ⅱ)若函數為“優(yōu)美函數”,求實數的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011年江蘇省高二下學期期中考試理數 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習冊答案