解:(Ⅰ)f(x)的定義域?yàn)?0,+∞),
,
(1)若-1<a<0,則當(dāng)0<x<-a時(shí),f′(x)>0;
當(dāng)-a<x<1時(shí),f′(x)<0;
當(dāng)x>1時(shí),f′(x)>0,
故f(x)分別在(0,-a),(1,+∞)上單調(diào)遞增,在(-a,1)上單調(diào)遞減;
(2)若a<-1,仿(1)可得f(x)分別在(0,1),(-a,+∞)上單調(diào)遞增,在(1,-a)上單調(diào)遞減;
(Ⅱ)存在a,使g(x)在[a,-a]上為減函數(shù),
事實(shí)上,設(shè)h(x)=(-2x
3+3ax
2+6ax-4a
2-6a)e
x(x∈R),
則h′(x)=[-2x
3+3(a-2)x
2+12ax-4a
2]e
x,
再設(shè)m(x)=-2x
3+3(a-2)x
2+12ax-4a
2(x∈R),
則當(dāng)g(x)在[a,-a]上單調(diào)遞減時(shí),h(x)必在[a,0]上單調(diào)遞減,所以h′(a)≤0,
由于e
x>0,因此m(a)≤0,
而m(a)=a
2(a+2),所以a≤-2,
此時(shí),顯然有g(shù)(x)在[a,-a]上為減函數(shù),當(dāng)且僅當(dāng)f(x)在[1,-a]上為減函數(shù),h(x)在[a,1]上為減函數(shù),且h(1)≥e·f(1),
由(Ⅰ)知,當(dāng)a≤-2時(shí),f(x)在[1,-a]上為減函數(shù), ①
又
,②
不難知道,
,
因m′(x)=-6x
2+6(a-2)x+12a=-6(x+2)(x-a),
令 m′(x)=0,則x=a,或x=-2,而a≤-2,于是
(1)當(dāng)a<-2時(shí),若a<x<-2,則m′(x)>0;
若-2<x<1,則m′(x)<0,
因而m(x)在(a,-2)上單調(diào)遞增,在(-2,1)上單調(diào)遞減;
(2)當(dāng)a=-2時(shí);m′(x)≤0,m(x)在(-2,1)上單調(diào)遞減;
綜合(1)、(2)知,當(dāng)a≤-2時(shí),m(x)在[a,1]上的最大值為m(-2)=-4a
2-12a-8,
所以,
,③
又對(duì)x∈[a,1],m(x)=0只有當(dāng)a=-2時(shí)在x=-2取得,
亦即h′(x)=0只有當(dāng)a=-2時(shí)在x=-2取得.
因此,當(dāng)a≤-2時(shí),h(x)在[a,1]上為減函數(shù),
從而由①,②, ③知,-3≤a≤-2;
綜上所述,存在a,使g(x)在[a,-a]上為減函數(shù),且a的取值范圍為[-3,-2].