若過A(-1,m)B(2m,1)的直線垂直于直線y=-x,則m=____________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點(diǎn)分別為F1F2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點(diǎn)的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M.N兩點(diǎn).試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線E:
x2
a2
-
y2
b2
=1
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且
OP1
OP2
=-
27
4
2
PP1
+
PP2
=
0
,求雙曲線E的方程;
(Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且
MQ
QN
(λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使
F1F2
⊥(
GM
GN
)
?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)若過A、B、F2三點(diǎn)的圓C恰好與直線l:x-
3
y-3=0
相切,求圓C方程及橢圓D的方程;
(Ⅱ)若過點(diǎn)T(3,0)的直線與橢圓D相交于兩點(diǎn)M、N,設(shè)P為橢圓上一點(diǎn),且滿足
OM
+
ON
=t
OP
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.

(1)求函數(shù)f(x)的解析式;

(2)若過A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案