己知函數(shù)f(x)=2x的圖象關(guān)于直線y=x對(duì)稱的圖象為C1,將C1向左平移一個(gè)單位得到圖象C2,再將C2向上平移一個(gè)單位得到圖象C3,則C3對(duì)應(yīng)的函數(shù)的解析式為( 。
分析:由函數(shù)f(x)=2x的圖象關(guān)于直線y=x對(duì)稱的圖象為C1,可知C1是函數(shù)f(x)的反函數(shù),即可得到C1的解析式.再利用變換法則“左加右減,上加下減”即可得出.
解答:解:∵函數(shù)f(x)=2x的圖象關(guān)于直線y=x對(duì)稱的圖象為C1,可知C1是函數(shù)f(x)的反函數(shù),可得C1的解析式:y=log2x.
將C1向左平移一個(gè)單位得到圖象C2,可得C2的解析式為:y=log2(x+1).
再將C2向上平移一個(gè)單位得到圖象C3,則C3對(duì)應(yīng)的函數(shù)的解析式為y=log2(x+1)+1.
故選C.
點(diǎn)評(píng):本題考查了互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱的特點(diǎn)、變換法則“左加右減,上加下減”等基礎(chǔ)知識(shí)與基本技能方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=log2(-x2+2x+3)的定義域?yàn)锳,函數(shù)g(x)=x+
1
x
x∈(-∞,0)∪(0,
1
2
)
的值域?yàn)锽,不等式2x2+mx-8<0的解集為C
(1)求A∪(CRB)、A∩B;
(2)若A∩B⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+bln(2x+1),其中b≠0.
(1)若己知函數(shù)f(x)是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)若己知b=1,求證:對(duì)任意的正整數(shù)n,不等式n<f(n)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)己知函數(shù)f(x+1)是偶函數(shù),當(dāng)x∈(-∞,1)時(shí),函數(shù)f(x)單調(diào)遞減,設(shè)a=f(-
1
2
),b=f(-1),c=f(2),則a,b,c的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給出下列5個(gè)命題:
①0<a≤
1
5
是函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為單調(diào)減函數(shù)的充要條件;
②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道II繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道III繞月飛行,若用2Cl和2c2分別表示摘圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長(zhǎng)軸的長(zhǎng),則有c1a2>a1c2;
③函數(shù)y=f(x)與它的反函數(shù)y=f-1(x)的圖象若相交,則交點(diǎn)必在直線y=x上;
④己知函數(shù)f(x)=loga(1-ax)在(O,1)上滿足,f′(x)>0,貝U
1
1-a
>1+a>
2a
;
⑤函數(shù)f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/為虛數(shù)單位)的最小值為2;
其中所有真命題的代號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,且滿足以下三條件:
①當(dāng)x1,x2是定義域中的數(shù)時(shí),有f(x1-x2)=
f(x1)•f(x2)+1f(x2)-f(x1)
;
②f(a)=-1(a>0,a是定義域中的一個(gè)數(shù));
③當(dāng)0<x<2a時(shí),f(x)<0.
(1)試證明函數(shù)f(x)是奇函數(shù).
(2)試證明f(x)在(0,4a)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案