在平面直角坐標系中,已知焦距為4的橢圓的左、右頂點分別為,橢圓的右焦點為,過作一條垂直于軸的直線與橢圓相交于,若線段的長為。

(1)求橢圓的方程;

(2)設(shè)是直線上的點,直線與橢圓分別交于點,求證:直線必過軸上的一定點,并求出此定點的坐標;

 

【答案】

(1)依題意,橢圓過點,故,解得!2分)

橢圓的方程為!5分)

(2)設(shè),直線的方程為,……………(6分)

 

 

代入橢圓方程,得, ……(7分)

設(shè),則,

,故點的坐標為!8分)

同理,直線的方程為,代入橢圓方程,,

設(shè),則,

可得點的坐標為。………………………(10分)

①若時,直線的方程為,與軸交于點;……11

②若,直線的方程為,…(13分)

,解得。綜上所述,直線必過軸上的定點。

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案