已知向量
a
=(1,0),
b
=(0,1),
c
=k
a
+
b
(k∈R),
d
=
a
-
b
,如果
c
d
那么( 。
分析:表示出向量
c
,
d
,根據(jù)向量平行的充要條件可求得k值,從而可判斷其方向關(guān)系.
解答:解:
c
=k
a
+
b
=k(1,0)+(0,1)=(k,1),
d
=
a
-
b
=(1,0)-(0,1)=(1,-1),
因為
c
d
,所以-k-1=0,解得k=-1.
c
=(-1,1),
d
=(1,-1),
c
=-
d
,
c
d
反向,
故選D.
點評:本題考查平面向量共線的坐標表示,考查學(xué)生的計算求解能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,0,1)
b
=(1,2,3),k∈R
,且(k
a
-
b
)
b
垂直,則k等于
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,0),
b
=(x,1)
,當x>0時,定義函數(shù)f(x)=
a
b
|
a
|+|
b
|

(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(2)數(shù)列{an}滿足:a1=a>0,an+1=f(an),n∈N*,Sn為數(shù)列{an}的前n項和,
①證明:Sn<2a;
②當a=1時,證明:an
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,0)
b
=(0,1)
,
c
=k
a
+
b
,
d
=
a
-2
b
,如果
c
d
,則k=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,0),
b
=(x,1)
,當x>0時,定義函數(shù)f(x)=
a
b
|
a
|+|
b
|

(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(2)數(shù)列{an}滿足:a1=a>0,an+1=f(an),n∈N*,Sn為數(shù)列{an}的前n項和,則:
①當a=1時,證明:an
1
2n
;
②對任意θ∈[0,2π],當2asinθ-2a+Sn≠0時,
證明:
2asinθ+2a-Sn
2asinθ-2a+Sn
4a-Sn
Sn
2asinθ+2a-Sn
2asinθ-2a+Sn
Sn
4a-Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺州二模)已知向量
a
=(1,0)
,向量
b
a
的夾角為60°,且|
b
|=2
.則
b
=(  )

查看答案和解析>>

同步練習(xí)冊答案