已知點(diǎn)A(2,0),橢圓E:
x2
a2
+
y2
b2
=1的離心率為
3
2
,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率
2
3
3
,O為坐標(biāo)原點(diǎn),求橢圓E的方程.
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先根據(jù)橢圓的離心率建立關(guān)系式,進(jìn)一步根據(jù)直線的斜率建立另一個關(guān)系式,最后求出a、b、c的值,最終確定橢圓的方程.
解答: 解:橢圓E:
x2
a2
+
y2
b2
=1的離心率為
3
2
,
則:
c
a
=
3
2

已知點(diǎn)A(2,0),F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率
2
3
3
,
則:
2
c
=
2
3
3

解得:c=
3

a=2
所以根據(jù)a2=b2+c2
解得:b=1
所以:橢圓E的方程為:
x2
4
+y2=1
點(diǎn)評:本題考查的知識要點(diǎn):橢圓標(biāo)準(zhǔn)方程的求法,離心率的應(yīng)用橢圓中a、b、c的關(guān)系,屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)(-1,m)在直線x+2y-1=0的上方,則y=
m2+1
m-1
( 。
A、有最小值2+2
2
B、有最大值2+2
2
C、有最大值2-2
2
D、有最小值2
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的一個頂點(diǎn)為(0,-1),焦點(diǎn)在x軸上,右焦點(diǎn)到直線x-y+1=0的距離為
2

(1)求橢圓C的方程;
(2)過點(diǎn)F(1,0)作直線l與橢圓C交于不同的兩點(diǎn)A、B,
FA
=λ
FB
,T(2,0),λ∈[2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
a
+
2
b
=1,(a>0,b>0)點(diǎn)(0,b)到直線x-2y-a=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-
π
3
)=
1
3
,且α為三角形一內(nèi)角,則cos(α+
π
6
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與雙曲線
x2
a2
-y2=13,(a>0)交于兩點(diǎn)M,N,且OM⊥ON,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f′(x)>f(x)恒成立,若x1<x2,則ex1f(x2)與ex2f(x1)的大小關(guān)系為( 。
A、ex1f(x2)>ex2f(x1
B、ex1f(x2)<ex2f(x1
C、ex1f(x2)=ex2f(x1
D、ex1f(x2)與ex2f(x1)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),一個焦點(diǎn)坐標(biāo)是F1(0,-1),離心率為
3
3

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1作直線交橢圓于A,B兩點(diǎn),F(xiàn)2是橢圓的另一個焦點(diǎn),求S△ABF2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA+cosA=
1
5
,則角A為( 。
A、銳角B、直角
C、鈍角D、銳角或鈍角

查看答案和解析>>

同步練習(xí)冊答案