|
(1) |
方法一:解:記AC與BD的交點(diǎn)為O,連接OE, ∵O、M分別是AC、EF的中點(diǎn),ACEF是矩形, ∴四邊形AOEM是平行四邊形,∴AM∥OE. ∵平面BDE,平面BDE,∴AM∥平面BDE. 方法二:建立如圖所示的空間直角坐標(biāo)系. |
(2) |
方法一:在平面AFD中過A作AS⊥DF于S,連結(jié)BS, ∵AB⊥AF,AB⊥AD, ∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影, 由三垂線定理得BS⊥DF. ∴∠BSA是二面角A—DF—B的平面角. 在RtΔASB中,∴ ∴二面角A—DF—B的大小為60o. 方法二:∵AF⊥AB,AB⊥AD,AF∴AB⊥平面ADF. ∴為平面DAF的法向量. ∵·=(·=0, ∴·=(·=0得 ⊥,⊥,∴為平面BDF的法向量. ∴cos<,>=∴與的夾角是60o,即所求二面角A—DF—B的大小是60o. |
(3) |
方法一:解:設(shè)CP=t(0≤t≤2),作PQ⊥AB于Q,則PQ∥AD, ∵PQ⊥AB,PQ⊥AF,, ∴PQ⊥平面ABF,平面ABF,∴PQ⊥QF. 在RtΔPQF中,∠FPQ=60o,PF=2PQ. ∵△PAQ為等腰直角三角形,∴又∵ΔPAF為直角三角形, ∴,∴ 所以t=1或t=3(舍去)即點(diǎn)P是AC的中點(diǎn). 方法二:設(shè)P(t,t,0)(0≤t≤)得 ∴=(,0,0)又∵和所成的角是60o. ∴解得或(舍去), |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
5 |
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
x2 |
12 |
y2 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年黑龍江省高三第三次模擬考試數(shù)學(xué)(文) 題型:解答題
選答題(本小題滿分10分)(請(qǐng)考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑。注意所做題號(hào)必須與所涂題目的題號(hào)一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計(jì)分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙的切線,為切點(diǎn),是⊙的割線,與⊙交于兩點(diǎn),圓心在的內(nèi)部,點(diǎn)是的中點(diǎn)。
(1)證明四點(diǎn)共圓;
(2)求的大小。
23.選修4—4:坐標(biāo)系與參數(shù)方程[來源:ZXXK]
已知直線經(jīng)過點(diǎn),傾斜角。
(1)寫出直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式同解,而的解集為空集,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年江蘇省宿遷市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com