【題目】如圖,在以為頂點的五面體中,底面是矩形, .

(1)證明: 平面;

(2)在中國古代數(shù)學(xué)經(jīng)典著作《九章算術(shù)》中,稱圖中所示的五面體為“芻甍”(chúméng),書中將芻甍的體積求法表述為:

術(shù)曰:倍下袤,上袤從之,以廣乘之,又以高乘之,六而一.其意思是:若芻甍的“下袤” 的長為,“上袤” 的長為,“廣” 的長為,“高”即“點到平面的距離”為,則芻甍的體積的計算公式為: ,證明該體積公式.

【答案】(1)見解析;(2)見解析.

【解析】分析:(1)先證明,再證明平面.(2)利用割補法證明 .

詳解:(1)證明:是矩形,,

平面,平面

平面,

平面,平面平面

平面平面,

平面.

(2)解:設(shè)分別是棱上的點,且滿足

鏈接.由第(1)問的證明知,

所以四邊形為平行四邊形.

,

,平面,

多面體為三棱柱.

因此,芻甍可別分割成四棱錐和三棱柱.

由題意知,矩形中,

矩形的面積,

又四棱錐的高,即“點到平面的距離”為,

四棱錐的體積;

三棱柱的體積可以看成是以矩形為底,以點到平面的距離為高的四棱柱體積的一半.

又矩形的面積

三棱柱的體積

芻甍的體積:

.

芻甍體積公式得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進(jìn)價為20元,每個的加工費為n元,銷售單價為x.根據(jù)市場調(diào)查,須有,,同時日銷售量m(單位:個)與成正比.當(dāng)每個工藝品的銷售單價為29元時,日銷售量為1000.

1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;

2)當(dāng)每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)的圖象在上有且只有一個公共點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

橢圓的一個交點為,點

的焦點,且.

(1)的方程;

(2)設(shè)為坐標(biāo)原點,在第一象限內(nèi),橢圓上是否存在點,使過的垂線交拋物線,直線軸于,且?若存在,求出點的坐標(biāo)和的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,,.

(1)求證:平面平面

(2)當(dāng)時,直線與平面所成的角能否為?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】滿足性質(zhì):對于區(qū)間(1,2)上的任意,恒成立的函數(shù)叫Ω函數(shù),則下面四個函數(shù)中,屬于Ω函數(shù)的是(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機抽取了組數(shù)據(jù)作為研究對象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖;

Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;

)在該商品進(jìn)貨量(噸)不超過6(噸)的前提下任取兩個值,求該商品進(jìn)貨量(噸)恰有一個值不超過3(噸)的概率.

<>參考公式和數(shù)據(jù): ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yf(x)的導(dǎo)函數(shù)yf′(x)的圖象如圖所示,給出下列命題:

①-3是函數(shù)yf(x)的極值點;

②-1是函數(shù)yf(x)的最小值點;

yf(x)在區(qū)間(3,1)上單調(diào)遞增;

yf(x)x0處切線的斜率小于零.

以上正確命題的序號是(  )

A. ①②B. ③④C. ①③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:,若橢圓上一點與其中心及長軸一個端點構(gòu)成等腰直角三角形.

Ⅰ)求橢圓E的離心率;

Ⅱ)如圖,若直線l與橢圓相交于ABAB是圓的一條直徑,求橢圓E的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且,.

1)計算,,,,并求數(shù)列的通項公式;

2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;

3)由數(shù)列的項組成一個新數(shù)列,,,設(shè)為數(shù)列的前項和,試求的值.

查看答案和解析>>

同步練習(xí)冊答案