已知:x>-1,求x-1+
4x+1
的最小值是
2
2
分析:由已知中x>-1,可得x+1>0,將原式x-1+
4
x+1
化為x+1+
4
x+1
-2后,利用基本不等式,易求出x-1+
4
x+1
的最小值.
解答:解:∵x>-1
∴x+1>0
∴x-1+
4
x+1
=x+1+
4
x+1
-2≥2
(x+1)
4
x+1
-2=4-2=2
故答案為:2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是基本不等式在最值問題中的應(yīng)用,其中根據(jù)已知判斷出x+1>0,并將x-1+
4
x+1
化為x+1+
4
x+1
-2,為基本不等式的使用創(chuàng)造出“一正,二定”的前提條件是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+y-1=0與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
相交于A,B兩點(diǎn),線段AB中點(diǎn)M在直線l:y=
1
2
x
上.
(1)求橢圓的離心率;(2)若橢圓右焦點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在單位圓x2+y2=1上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•嘉定區(qū)二模)如圖,已知點(diǎn)F(1,0),點(diǎn)M在x軸上,點(diǎn)N在y軸上,且
NM
NF
=0,點(diǎn)R滿足
NM
+
NR
=
0

(1)求動(dòng)點(diǎn)R的軌跡C的方程;
(2)過B(4,0)作直線l交軌跡C于P、Q兩點(diǎn),求
OP
OQ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•惠州模擬)設(shè)n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)]}
n個(gè)f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosxcos(x-
π
6
)-
3
sin2x+sinxcosx

(1)求f(x)的最小正周期
(2)當(dāng)x∈[0,π]時(shí),若f(x)=1,求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案