平面向量,則這樣的向量有( )
A.1個
B.2個
C.多個2個
D.不存在
【答案】分析:由題意可得:,再由點到直線的距離公式可得:=r,可得直線與圓相切,即直線與圓只有一個交點,進而得到答案.
解答:解:因為,并且,
所以,
所以由點到直線的距離公式可得:=r,
所以直線與圓相切,即直線與圓只有一個交點,
所以向量有1個.
故選A.
點評:解決此類問題的關(guān)鍵是熟練掌握向量的數(shù)量積運算,以及直線與圓的位置關(guān)系,本題考查了點到直線的距離公式,此題屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

出于應(yīng)用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
j
>=
π
3
,
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎(chǔ)上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

(重慶八中模擬)在平面斜坐標系xOy中,∠xOy=60°,平面上任一點P關(guān)于斜坐標系的斜坐標這樣定義:若(,分別為與x軸,y軸正方向相同的單位向量),則點P的斜坐標為(xy),則以O為圓心,1為半徑的圓在斜坐標系下方程為

[  ]

A

B

C

D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

出于應(yīng)用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取數(shù)學公式數(shù)學公式為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量數(shù)學公式,則存在唯一的一對實數(shù)λ,μ,使得數(shù)學公式=數(shù)學公式數(shù)學公式,我們就把實數(shù)對(λ,μ)稱作向量數(shù)學公式的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用數(shù)學公式數(shù)學公式表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<數(shù)學公式數(shù)學公式>=數(shù)學公式,
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量數(shù)學公式數(shù)學公式做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量數(shù)學公式的坐標;
(2)在(1)的基礎(chǔ)上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

出于應(yīng)用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
,
j
>=
π
3

(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎(chǔ)上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年遼寧省沈陽二中高一(下)期中數(shù)學試卷(必修4)(解析版) 題型:解答題

出于應(yīng)用方便和數(shù)學交流的需要,我們教材定義向量的坐標如下:取為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量,則存在唯一的一對實數(shù)λ,μ,使得=,我們就把實數(shù)對(λ,μ)稱作向量的坐標.并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.現(xiàn)在我們用表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<,>=
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量的坐標;
(2)在(1)的基礎(chǔ)上研究斜坐標系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標運算公式.

查看答案和解析>>

同步練習冊答案