已知函數(shù)f(x)=x3-ax2+3x,a∈R
(1)若x=3是f(x)的極值點(diǎn),求f(x)的極值;
(2)若函數(shù)f(x)是R上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍.
分析:(1)求f(x)的導(dǎo)數(shù)f′(x),當(dāng)x=3時(shí)f′(x)=0,求得a的值,從而得f′(x)的解析式;再利用導(dǎo)函數(shù)的正負(fù)判定函數(shù)的增減性來(lái)求極值;
(2))由f(x)是R上的增函數(shù),得f′(x)≥0恒成立,求出a的取值范圍.
解答:解:(1)∵f(x)=x3-ax2+3x,a∈R,∴f′(x)=3x2-2ax+3;
又x=3是f(x)的極值點(diǎn),∴27-6a+3=0,∴a=5;
當(dāng)a=5時(shí),f′(x)=3x2-10x+3=(3x-1)(x-3),f(x)=x3-5x2+3x,
∴當(dāng)x<
1
3
時(shí),f′(x)>0,f(x)是增函數(shù),當(dāng)
1
3
<x<3時(shí),f′(x)<0,f(x)是減函數(shù),
∴當(dāng)x=
1
3
時(shí),f(x)取得極大值
13
27
;又當(dāng)x>3時(shí),f′(x)>0,f(x)是增函數(shù),
∴當(dāng)x=3時(shí),f(x)取得極小值-9;
(2))∵f(x)是R上的單調(diào)遞增函數(shù),且f′(x)=3x2-2ax+3;
∴f′(x)≥0恒成立,即3x2-2ax+3≥0,
4×3×3-4a2
4×3
≥0,解得-3≤a≤3,
∴a的取值范圍{a|-3≤a≤3}.
點(diǎn)評(píng):本題考查了利用函數(shù)的導(dǎo)數(shù)來(lái)判定函數(shù)的單調(diào)性與求極值的問(wèn)題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案