【題目】若函數(shù)f(x)= sin(2x+φ)(|φ|< )的圖象關(guān)于直線x= 對稱,且當(dāng)x1 , x2∈(﹣ ,﹣ ),x1≠x2時,f(x1)=f(x2),則f(x1+x2)等于(
A.
B.
C.
D.

【答案】C
【解析】解:∵sin(2× +φ)=±1,

∴φ=kπ+ ,k∈Z,

又∵|φ|<

∴φ= ,

∴f(x)= sin(2x+ ),

當(dāng)x∈(﹣ ,﹣ ),2x+ ∈(﹣ ,﹣π),區(qū)間內(nèi)有唯一對稱軸x=﹣ ,

∵x1,x2∈(﹣ ,﹣ ),x1≠x2時,f(x1)=f(x2),

∴x1,x2關(guān)于x=﹣ 對稱,即x1+x2=﹣ π,

∴f(x1+x2)=

故選C.

由正弦函數(shù)的對稱性可得sin(2× +φ)=±1,結(jié)合范圍|φ|< ,即可解得φ的值,得到函數(shù)f(x)解析式,由題意利用正弦函數(shù)的性質(zhì)可得x1+x2=﹣ 代入函數(shù)解析式利用誘導(dǎo)公式即可計算求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圖一是四面體ABCD的三視圖,E是AB的中點,F(xiàn)是CD的中點.
(1)求四面體ABCD的體積;
(2)求EF與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是偶函數(shù),f(x+1)是奇函數(shù),且對任意的x1 , x2∈[0,1],且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0,設(shè)a=f( ),b=﹣f( ),c=f( ),則下列結(jié)論正確的是(
A.a>b>c
B.b>a>c
C.b>c>a
D.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且tanA,tanB是關(guān)于x的方程x2+(1+p)x+p+2=0的兩個根,c=4.
(1)求角C的大小;
(2)求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長度相等,則b等于(
A.±
B.±
C.±2
D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個總體中有600個個體,隨機編號為001,002,…,600,利用系統(tǒng)抽樣方法抽取容量為24的一個樣本,總體分組后在第一組隨機抽得的編號為006,則在編號為051~125之間抽得的編號為(
A.056,080,104
B.054,078,102
C.054,079,104
D.056,081,106

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣
(I)求函數(shù)f(x)的值域;
(II)已知銳角△ABC的兩邊長分別是函數(shù)f(x)的最大值和最小值,且△ABC的外接圓半徑為 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知右焦點為F的橢圓C: + =1(a>b>0)過點M(1, ),直線x=a與拋物線L:x2= y交于點N,且 = ,其中O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于A、B兩點.
①若直線l與x軸垂直,過點P(4,0)的直線PB交橢圓C于另一點E,證明直線AE與x軸相交于定點;
②已知D為橢圓C的左頂點,若l與直線DM平行,判斷直線MA,MB是否關(guān)于直線FM對稱,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案