已知f(x)=2sinxcosx+2cos2x
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[0,
π
2
]時,求函數(shù)f(x)的最大值及取得最大值的x值.
考點(diǎn):兩角和與差的正弦函數(shù),三角函數(shù)的周期性及其求法,三角函數(shù)的最值
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)由倍角公式化簡可得函數(shù)解析式為f(x)=
2
sin(2x+
π
4
)+1,由三角函數(shù)的周期性及其求法即可求解.
(Ⅱ)由已知可得2x+
π
4
∈[
π
4
,
4
],根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得函數(shù)f(x)的最大值及取得最大值的x值.
解答: 解:(Ⅰ)∵f(x)=2sinxcosx+2cos2x=sin2x+cos2x+1=
2
sin(2x+
π
4
)+1,
∴T=
2
=π.
(Ⅱ)∵x∈[0,
π
2
],
∴2x+
π
4
∈[
π
4
4
],
∴當(dāng)2x+
π
4
=
π
2
即有x=
π
8
時,f(x)max=
2
+1
,
當(dāng)2x+
π
4
=
4
即有x=
π
2
時,f(x)min=1-
2
點(diǎn)評:本題主要考查了三角函數(shù)的周期性及其求法,兩角和與差的正弦函數(shù)公式的應(yīng)用,三角函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為防洪抗旱,某地區(qū)大面積植樹造林,如圖,在區(qū)域{(x,y)|x≥0,y≥0}內(nèi)植樹,第一棵樹在A1(0,1)點(diǎn),第二棵樹在B1(1,1)點(diǎn),第三棵樹在C1(1,0)點(diǎn),第四棵樹在C2(2,0)點(diǎn),接著按圖中箭頭方向每隔一個單位長度種一棵樹,那么,第2013棵樹所在的點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{2n-1}的前n項(xiàng)組成集合An={1,3,7,…,2n-1}(n∈N*),從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn.例如:當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.
(Ⅰ)求S3,S4
(Ⅱ)由S1,S2,S3,S4的值歸納出Sn的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意x,y滿足f(x+y)=f(x)f(y),且f(x)不恒為0
(1)證明:f(x)>0
(2)當(dāng)x>0,f(x)>1,證明凼數(shù)f(x)單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+
3
sinxcosx.
(1)求f(x)的最值及相應(yīng)的x值;
(2)若-
π
3
<α<
π
6
,且f(α)=
11
10
,求cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+4y-4=0截直線 x+y-l=0所截得的弦長是( 。
A、2
B、2
2
C、2
7
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個不透明的袋中裝有除顏色外其余均相同的4個紅球和9個白球,從中隨即摸出一個,則摸到白球的概率是( 。
A、
4
13
B、
4
9
C、
1
9
D、
9
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|+2|x-1|,g(a)=|a-2|+3a+2.
(1)當(dāng)a取使不等式|x-8|+|x-6|≥a恒成立的最大值時,求不等式f(x)≥2的解集;
(2)若不等式f(3)≤g(a)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“?x∈[1,2],2x2-a≥0”,命題q:“?x∈R,x2+2ax+2-a=0”,若命題“p且q”是真命題,則實(shí)數(shù)a的取值范圍是( 。
A、a≤-2或1≤a≤2
B、a<-2或1<a≤2)
C、a≤-2或1≤a<2
D、a<-2或1<a<2

查看答案和解析>>

同步練習(xí)冊答案