精英家教網(wǎng)如圖,△ABC中,AB=4,AC=4,∠BAC=60°,延長(zhǎng)CB到D,使|
BA
|=|
BD
|
,當(dāng)E點(diǎn)在線(xiàn)段AD上移動(dòng)時(shí),若
AE
AB
AC
,則λ-μ的最大值是( 。
A、1
B、
3
C、3
D、2
3
分析:先設(shè)
AE
=t
AD
,然后用向量
AB
、
AC
表示出向量
AE
,即可找到λ和μ的關(guān)系,得到答案.
解答:解:設(shè)
AE
=t
AD
,t∈[0,1]
AE
=t
AD
=t(
AC
+
CD
)
=t
AC
+t(2
CB

=t
AC
+2t(
AB
-
AC
)=2t
AB
-t
AC

∴λ=2t,μ=-t
∴λ-μ=3t
∵t∈[0,1]
∴λ-μ的最大值為3
故選C.
點(diǎn)評(píng):本題主要考查平面向量的基本定理,即平面內(nèi)任一向量都可由任意兩不共線(xiàn)的向量唯一表示出來(lái).屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一點(diǎn)P在平面ABC內(nèi)的射影是AB中點(diǎn)M,二面角P-AC-B的大小為45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在△ABC中,AB⊥AC,
BD
=
5
3
BC
,|
AC
|
=2,則
AC
AD
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)如圖,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
兩點(diǎn)分別在線(xiàn)段AB、AC上,滿(mǎn)足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.現(xiàn)將△ABC沿DE折成直二面角A-DE-B.
(1)求證:當(dāng)λ=
1
2
時(shí),面ADC⊥面ABE;
(2)當(dāng)λ∈(0,1)時(shí),直線(xiàn)AD與平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江大慶實(shí)驗(yàn)中學(xué)高二上學(xué)期開(kāi)學(xué)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)如圖,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一點(diǎn)P在平面ABC內(nèi)的射影是AB中點(diǎn)M,二面角P—AC—B的大小為45°.

(I)求二面角P—BC—A的正切值;

(II)求二面角C—PB—A的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省大慶實(shí)驗(yàn)中學(xué)高二(上)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一點(diǎn)P在平面ABC內(nèi)的射影是AB中點(diǎn)M,二面角P-AC-B的大小為45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案