已知圓:,
直線:,且與圓相交于、兩點(diǎn),點(diǎn),且.
(1)當(dāng)時(shí),求的值;
(2)當(dāng),求的取值范圍.
(1)k=1(2)
【解析】(1)因?yàn)楫?dāng)b=1時(shí),M在圓C上,所以由可知直線l過(guò)圓心,從而求出k.
(2)設(shè)設(shè),,
所以,即,
然后直線l的方程與圓C的方程聯(lián)立,消y后借助韋達(dá)定理來(lái)解決即可.
解:(1)圓:,當(dāng)時(shí),點(diǎn)在圓上,當(dāng)且僅當(dāng)直線經(jīng)過(guò)圓心時(shí), 滿足. 圓心的坐標(biāo)為,.………………………………………4分
(2)由
消去得:. ①…………………6分
設(shè), .
,.
, 即.
,, 即
.……………………8分
,即.
令, 則. 當(dāng)時(shí),由對(duì)號(hào)函數(shù)知:
在區(qū)間上單調(diào)遞增.
當(dāng)時(shí),. ……………………10分
. 即
解得……………12分
或.
由①式得, 解得.
或. 的取值范圍是
.……14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、2 | B、-9 | C、2或-8 | D、1或-9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
9 |
2 |
9 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
2 |
5 |
2 |
1 |
2 |
1 |
2 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
3
| ||
7 |
3
| ||
7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com