函數(shù)f(x)=loga(x-1)+2恒過(guò)定點(diǎn)


  1. A.
    (1,2)
  2. B.
    (2,2)
  3. C.
    (1,0)
  4. D.
    (-1,3)
B
分析:由對(duì)數(shù)定義知,函數(shù)y=logax圖象過(guò)定點(diǎn)(1,0),故可令x-2=1求此對(duì)數(shù)型函數(shù)圖象過(guò)的定點(diǎn).
解答:由對(duì)數(shù)函數(shù)的定義,
令x-1=1,此時(shí)y=2,
解得x=2,
故函數(shù)y=loga(x-1)的圖象恒過(guò)定點(diǎn)(2,2)
故選B
點(diǎn)評(píng):本題考點(diǎn)是對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),考查對(duì)數(shù)函數(shù)恒過(guò)定點(diǎn)的問(wèn)題,由對(duì)數(shù)函數(shù)定義可直接得到真數(shù)為1時(shí)對(duì)數(shù)式的值一定為0,利用此規(guī)律即可求得函數(shù)圖象恒過(guò)定點(diǎn)的坐標(biāo)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有三個(gè)命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案