求與雙曲線x2-4y2=4有共同的漸近線,并且經(jīng)過點(diǎn)(2,
5
)
的雙曲線方程.
分析:依題意,設(shè)雙曲線的方程為x2-4y2=λ,將點(diǎn)(2,
5
)的坐標(biāo)代入可求λ.
解答:解:設(shè)與雙曲線x2-4y2=4有共同的漸近線的雙曲線的方程為x2-4y2=λ,
∵該雙曲線經(jīng)過點(diǎn)(2,
5
),
∴λ=4-4×5=-16.
∴所求的雙曲線方程為:x2-4y2=-16,
整理得:
y2
4
-
x2
16
=1
點(diǎn)評(píng):本題考查雙曲線的簡(jiǎn)單性質(zhì),設(shè)出所求雙曲線的方程為x2-4y2=λ是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:天利38套《2008全國(guó)各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)理 題型:044

如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0

(Ⅰ)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(Ⅱ)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為P,且()p2=m,m∈,求(Ⅰ)中切點(diǎn)T到直線PQ的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天利38套《2008全國(guó)各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)文 大綱版 題型:044

如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0

(Ⅰ)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(Ⅱ)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為P,且,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點(diǎn)T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點(diǎn)T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案