一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(Ⅰ)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)的概率;
(Ⅱ)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由頻率分布直方圖求出事件A1,A2的概率,利用相互獨(dú)立事件的概率公式求出事件“在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)”的概率;
(Ⅱ)寫出X可取得值,利用相互獨(dú)立事件的概率公式求出X取每一個(gè)值的概率;列出分布列.根據(jù)服從二項(xiàng)分布的隨機(jī)變量的期望與方差公式求出期望E(X)及方差D(X).
解答: 解:(Ⅰ)設(shè)A1表示事件“日銷售量不低于100個(gè)”,A2表示事件“日銷售量低于50個(gè)”
B表示事件“在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)”,
因此P(A1)=(0.006+0.004+0.002)×50=0.6,
P(A2)=0.003×50=0.15,
P(B)=0.6×0.6×0.15×2=0.108,
(Ⅱ)X可能取的值為0,1,2,3,相應(yīng)的概率為:
P(X=0)=
C
0
3
(1-0.6)3=0.064

P(X=1)=
C
1
3
0.6(1-0.6)2=0.288
,
P(X=2)=
C
2
3
0.62(1-0.6)=0.432
,
P(X=3)=
C
3
3
0.63=0.216
,
隨機(jī)變量X的分布列為
X0123
P0.0640.2880.4320.216
因?yàn)閄~B(3,0.6),
所以期望E(X)=3×0.6=1.8,
方差D(X)=3×0.6×(1-0.6)=0.72.
點(diǎn)評:在n次獨(dú)立重復(fù)試驗(yàn)中,事件A發(fā)生的次數(shù)服從二項(xiàng)分布、服從二項(xiàng)分布的隨機(jī)變量的期望與方差公式,考查分布列的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3}記“使得
am
⊥(
am
-
bn
)成立的(m,n)”為事件A,則事件A發(fā)生的概率為(  )
A、
1
3
B、
1
9
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上.
(Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若二面角D1-EC-D的大小為45°,求點(diǎn)B到平面D1EC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,回答下列問題:
(Ⅰ)若a=sin
6
,b=lnπ,c=e-
1
2
,則輸出的數(shù)是a,b,c中的哪一個(gè)?請簡要說明理由;
(Ⅱ)已知c=2,a,b∈{1,2,3,4},且a≠b,現(xiàn)隨機(jī)輸入a,b的值一次,則輸出的a,c的概率分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)
f(x)=(cosx-x)(π+2x)-
8
3
(sinx+1)
g(x)=3(x-π)cosx-4(1+sinx)ln(3-
2x
π

證明:
(Ⅰ)存在唯一x0∈(0,
π
2
),使f(x0)=0;
(Ⅱ)存在唯一x1∈(
π
2
,π),使g(x1)=0,且對(Ⅰ)中的x0,有x0+x1<π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,曲線C:
x=2+
2
2
t
y=1+
2
2
t
(t為參數(shù))的普通方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某空間幾何體的正視圖是三角形,則該幾何體不可能是( 。
A、圓柱B、圓錐
C、四面體D、三棱柱

查看答案和解析>>

同步練習(xí)冊答案