若橢圓數(shù)學(xué)公式上一點(diǎn)P到其焦點(diǎn)F1的距離為6,則P到另一焦點(diǎn)F2的距離為________.

14
分析:根據(jù)橢圓的定義可得|PF1|+|PF2|=2a=20,結(jié)合P到其焦點(diǎn)F1的距離為6,可求P到另一焦點(diǎn)F2的距離.
解答:根據(jù)橢圓的定義可得|PF1|+|PF2|=2a=20
∵P到其焦點(diǎn)F1的距離為6,
∴|PF2|=20-6=14
即P到另一焦點(diǎn)F2的距離為14
故答案為:14.
點(diǎn)評(píng):本題考查橢圓的定義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0).定義圓心在原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(
2
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
3

(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),且l1,l2分別交其“準(zhǔn)圓”于另一點(diǎn)M,N.求證:|MN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省石家莊市畢業(yè)班復(fù)習(xí)質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:填空題

. 已知橢鞏上一點(diǎn)P到其左準(zhǔn)線的距離為10,F是該橢圓的左焦點(diǎn),若點(diǎn)M滿足(其中O為坐標(biāo)原點(diǎn)),則=_________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓上一點(diǎn)P到其左準(zhǔn)線的距離為10,F是該橢圓的左焦點(diǎn),若點(diǎn)M滿足(其中O為坐標(biāo)原點(diǎn)),則=_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓上一點(diǎn)P到其左準(zhǔn)線的距離為10,F是該橢圓的左焦點(diǎn),若點(diǎn)M滿足(其中O為坐標(biāo)原點(diǎn)),則=_________

查看答案和解析>>

同步練習(xí)冊(cè)答案