在空間直角坐標(biāo)系中,點(-2,1,4)關(guān)于x軸的對稱點的坐標(biāo)為( )
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)
【答案】分析:先根據(jù)空間直角坐標(biāo)系對稱點的特征,點(x,y,z)關(guān)于x軸的對稱點的坐標(biāo)為只須將橫坐標(biāo)、豎坐標(biāo)變成原來的相反數(shù)即可,即可得對稱點的坐標(biāo).
解答:解:∵在空間直角坐標(biāo)系中,
點(x,y,z)關(guān)于x軸的對稱點的坐標(biāo)為:(x,-y,-z),
∴點(-2,1,4)關(guān)于x軸的對稱點的坐標(biāo)為:
(-2,-1,-4).
故選B.
點評:本小題主要考查空間直角坐標(biāo)系、空間直角坐標(biāo)系中點的坐標(biāo)特征等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、在空間直角坐標(biāo)系中,點P(1,2,3)關(guān)于xOz平面的對稱點的坐標(biāo)是
(1,-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在空間直角坐標(biāo)系中,正方體棱長為2,點E是棱AB的中點,點F(0,y,z)是正方體的面AA1D1D上點,且CF⊥B1E,則點F(0,y,z)滿足方程( 。
A、y-z=0B、2y-z-1=0C、2y-z-2=0D、z-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在空間直角坐標(biāo)系中,正方體棱長為2,點E是棱B1C1的中點,點F(x,y,z)是正方體的面AA1D1D上的點,且CF∥平面A1BE,則點F(x,y,z)滿足方程( 。
A、y-z=0B、y-z-1=0C、2y-z-2=0D、2y-z-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,點(1,2,3 )到原點的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)在空間直角坐標(biāo)系中,設(shè)A(1,2,a),B(2,3,4),若|AB|=
3
,則實數(shù)a的值是( 。

查看答案和解析>>

同步練習(xí)冊答案