為了調(diào)查某大學(xué)學(xué)生在周日上網(wǎng)的時間,隨機(jī)對100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果;
表1:男生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) [30,40) [40,50) [50,60) [60,70) [70,80]
人 數(shù) 5 25 30 25 15
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間 (分鐘) [30,40) [40,50) [50,60) [60,70) [70,80]
人數(shù) 10 20 40 20 10
(1)若該大學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(2)完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生周日上網(wǎng)時間與性別有關(guān)”?
表3
上網(wǎng)時間少于60分鐘 上網(wǎng)時間不少于60分鐘 合計
男生
女生
合計
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83
考點:獨立性檢驗的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:(1)女生網(wǎng)時間不少于60分鐘的人數(shù)的比例為
30
100
,即可得出結(jié)論;
(2)根據(jù)所給數(shù)據(jù)完成表3的2×2列聯(lián)表,利用公式求出k2,與臨界值比較,可得結(jié)論.
解答: 解:(1)若該大學(xué)共有女生750人,估計其中上網(wǎng)時間不少于60分鐘的人數(shù)750×
30
100
=225人;
(2)
60 40
70 30
K2=
200(1800-2800)2
70×130×100×100
=2.198

因為2.198<2.706,所以不能有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”.
點評:本題考查概率知識的運(yùn)用,考查獨立性檢驗知識,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

掌握數(shù)學(xué),一個美好的祝愿:張開你的右手,你將看到你的掌紋,有人稱它是命運(yùn)的密語,其實是我們所熟悉函數(shù)的圖象,每天都握在我們的掌心.某人的掌紋如圖所示,在所給的直角坐標(biāo)系中,它們只可能是下列給出的5個函數(shù)中的( 。
①y=(
3
2
x  
②y=(
2
3
x   
③y=
x
-
1
2
  
④y=ln(x+
1
2
)   
⑤y=ln(x-
1
2
A、②③⑤B、①③④
C、①③⑤D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為 y2=4x.
(Ⅰ)寫出其焦點F的坐標(biāo)和準(zhǔn)線l的方程;
(Ⅱ)直線l過焦點F,斜率為1,交拋物線C于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在對哈三中高二學(xué)生喜歡學(xué)的科目的一次調(diào)查中,共調(diào)查了200人,其中男同學(xué)120 人,女同學(xué)80人,男同學(xué)中有80人喜歡學(xué)數(shù)學(xué),另外40人喜歡學(xué)語文;女同學(xué)中有30人喜歡學(xué)數(shù)學(xué),另外50人喜歡學(xué)語文.
(Ⅰ)填表,完成2×2列聯(lián)表;
喜歡科目
性別
數(shù)學(xué) 語文 總計
總計
(Ⅱ)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為性別與喜歡科目有關(guān)系?參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2012年的自主招生考試中隨機(jī)抽取60名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100),得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上(含85分)的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格.
(Ⅰ)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
(Ⅲ)若該校決定在第4,5組中隨機(jī)抽取2名學(xué)生接受考官A的面試,第5組中有ξ名學(xué)生被考官A面試,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的單調(diào)函數(shù),對任意的實數(shù)m,n總有:f(m+n)=f(m)•f(n)且x>0時,0<f(x)<1.
(1)證明:f(0)=1且x<0時f(x)>1;
(2)當(dāng)f(4)=
1
16
,求使f(x2-1)•f(a-2x)≤
1
4
對任意實數(shù)x恒成立的參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=3n-1,求證:
n
3
-
1
6
a1
a2
+
a2
a3
+…+
an
an+1
n
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p(x)=a1
C
0
n
(2-x)n+a2
C
1
n
x(2-x)n-1+a3
C
2
n
x2(2-x)n-2+…+an
C
n-1
n
xn-1(2-x)+an+1
C
n
n
xn
(Ⅰ)若數(shù)列{an}是首項為1,公比為3的等比數(shù)列,求p(-
1
2
)的值;
(Ⅱ)若數(shù)列{an}是首項為1,公差為3的等差數(shù)列,求證:p(x)是關(guān)于x的一次多項式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓
x2
16
+
y2
12
=1上找一點,使這一點到直線x-2y-12=0的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案