如圖,AB為圓O的直徑,D為AB延長線上一點,直線DC切圓O于點C,∠DAC=30°,OD=10,則圓O的半徑r=
5
5
,DC=
5
3
5
3
分析:連接OC,由AB為圓O的直徑,直線DC切圓O于點C,∠DAC=30°,OD=10,知∠COD=60°,∠OCD=90°,∠D=30°,所以圓O的半徑r=OC=
1
2
OD=5
,BD=10-5=5,AD=10+5=15,由此能求出CD.
解答:解:連接OC,
∵AB為圓O的直徑,直線DC切圓O于點C,∠DAC=30°,OD=10,
∴∠COD=60°,∠OCD=90°,∠D=30°,
∴圓O的半徑r=OC=
1
2
OD=5

∴BD=10-5=5,AD=10+5=15,
∴CD2=DB×DA
=5×15=75.
CD=
75
=5
3

故答案為:5,5
3

點評:本題考查圓的切線的性質(zhì)的應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意切割線定理的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟南市高三12月質(zhì)量檢測數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)如圖,AB為圓O的直

徑,點E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:;

⑵設(shè)FC的中點為M,求證:;

⑶設(shè)平面CBF將幾何體分成的兩個錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案