已知函數(shù)f(x-1)=2x2-x,則f′(x)=
4x+3
4x+3
分析:由已知中f(x-1)=2x2-x,我們可將式子右邊湊配成a(x-1)2+b(x-1)+c的形式,進(jìn)而將(x-1)全部替換成x后,即可求出f(x),最后根據(jù)多項(xiàng)式函數(shù)的導(dǎo)數(shù)公式解之即可.
解答:解:∵f(x-1)=2x2-x=2(x-1)2+3(x-1)+1,
∴f(x)=2x2+3x+1,
∴f′(x)=4x+3.
故答案為:4x+3.
點(diǎn)評(píng):本題考查的是函數(shù)解析式的求解及其常用方法和導(dǎo)函數(shù),其中本題使用的湊配法,是已知復(fù)合函數(shù)解析式及內(nèi)函數(shù)的解析,求外函數(shù)解析式時(shí)常用的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知函數(shù)f(x-1)=x2-2x+2,則f(x)=
x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①y=2x與y=log2x互為反函數(shù),其圖象關(guān)于y=x對(duì)稱;
②函數(shù)y=f(x)滿足f(2+x)=f(2-x),則其圖象關(guān)于直線x=2對(duì)稱;
③已知函數(shù)f(x-1)=x2-2x+1.則f(5)=26;
④已知△ABC,P為平面ABC外任意一點(diǎn),且PA⊥PB⊥PC,則點(diǎn)P在平面ABC內(nèi)的正投影是△ABC的垂心.
正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)為奇函數(shù),函數(shù)f(x-1)為偶函數(shù),且f(0)=2,則f(4)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•無錫二模)已知函數(shù)f(x+1)為奇函數(shù),函數(shù)f(x-1)為偶函數(shù),且f(0)=2,則f(4)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)=2x-1,則f(5)=
8
8

查看答案和解析>>

同步練習(xí)冊(cè)答案