求圓上的點到直線的距離的最小值和最大值.

最小值為,最大值為


解析:

設(shè)與平行的直線為

當(dāng)直線與圓相切時,切點就是圓上到直線

的距離最短或最長的點,則,

當(dāng)時,兩平行直線之間的距離是

當(dāng)時,兩平行直線之間的距離是

上的點到直線的最小值為,最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓M:x2+y2=8,將曲線上每一點的縱坐標(biāo)壓縮到原來的
12
,對應(yīng)的橫坐標(biāo)不變,得到曲線C.經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓M:x2+y2=8,將圓上每一點的橫坐標(biāo)不變,縱坐標(biāo)壓縮到原來的
12
,得到曲線C.點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濰坊市高三2月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

給定橢圓,稱圓心在原點,半徑為的圓是

橢圓的“準圓”。若橢圓的一個焦點為,其短軸上的一個端點到的距

離為.

(Ⅰ)求橢圓的方程和其“準圓”方程.

(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線使得與橢

都只有一個交點,且分別交其“準圓”于點

(1)當(dāng)為“準圓”與軸正半軸的交點時,求的方程.

(2)求證:為定值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)圓M:x2+y2=8,將曲線上每一點的縱坐標(biāo)壓縮到原來的數(shù)學(xué)公式,對應(yīng)的橫坐標(biāo)不變,得到曲線C.經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷08(理科)(解析版) 題型:解答題

設(shè)圓M:x2+y2=8,將圓上每一點的橫坐標(biāo)不變,縱坐標(biāo)壓縮到原來的,得到曲線C.點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案