精英家教網(wǎng)三棱錐P-ABC中M、N分別是AP、AB的中點(diǎn),
PE
EC
=
BF
FC
=2
下列命題正確的是(  )
A、MN=EF
B、ME與NF是異面直線
C、直線ME、NF、AC相交于同一點(diǎn)
D、直線ME、NF、AC不相交于同一點(diǎn)
分析:由已知中三棱錐P-ABC中M、N分別是AP、AB的中點(diǎn),
PE
EC
=
BF
FC
=2
,結(jié)合三角形中位線定理,及平行線分線段成比例定理,我們易得四邊形MNFE為梯形,ME與NF必交于一點(diǎn),再由公理3即可得到答案.
解答:解:∵M(jìn)、N分別是AP、AB的中點(diǎn),
∴MN∥PB,且MN=
1
2
PB
又由
PE
EC
=
BF
FC
=2

∴EF∥PB,且EF=
1
3
PB
∴MN∥EF,且MN≠EF
∴四邊形MNFE為梯形
∴ME與NF必交于一點(diǎn)
又由ME?平面APC
NF?平面ABC
平面APC∩平面ABC=AC
由公理3易得,ME與NF交點(diǎn)在直線AC上
故直線ME、NF、AC相交于同一點(diǎn)
故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱結(jié)構(gòu)特征,及公理3,其中根據(jù)已知判斷出四邊形MNFE為梯形,ME與NF必交于一點(diǎn),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正三棱錐P—ABC中,M、N分別是側(cè)棱PB、PC的中點(diǎn),若截面AMN⊥側(cè)面PBC,則此三棱錐的側(cè)棱與底面所成角的正切值是(    )

A.                 B.              C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐PABC中,MN分別是PA、BC的中點(diǎn),G是MN的中點(diǎn),求證:PG⊥BC.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省蕪湖一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

三棱錐P-ABC中M、N分別是AP、AB的中點(diǎn),下列命題正確的是( )

A.MN=EF
B.ME與NF是異面直線
C.直線ME、NF、AC相交于同一點(diǎn)
D.直線ME、NF、AC不相交于同一點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省南安市僑光中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

三棱錐P-ABC中M、N分別是AP、AB的中點(diǎn),下列命題正確的是( )

A.MN=EF
B.ME與NF是異面直線
C.直線ME、NF、AC相交于同一點(diǎn)
D.直線ME、NF、AC不相交于同一點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案