有以下四個(gè)命題:
①兩直線m,n與平面α所成的角相等的充要條件是mn;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個(gè)函數(shù)y=x-1,y=x
1
3
,y=x
1
2
,y=x3
,其中在R上是增函數(shù)的函數(shù)有3個(gè).
其中真命題的序號(hào)是______.(漏填、多填或錯(cuò)填均不得分)
①當(dāng)兩直線m,n與平面α均平行,且相交時(shí),所成的角相等,均為0度,顯然錯(cuò)誤
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1 正確
③根據(jù)特稱(chēng)命題的否定判斷,可知③正確
④根據(jù)冪函數(shù)的圖象與性質(zhì),只有y=x
1
3
,y=x3
R上是增函數(shù)
故答案為:②③
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:其中正確的命題是( 。
(1)過(guò)一點(diǎn)有且僅有一個(gè)平面與已知直線垂直;
(2)兩條相交直線在同一平面內(nèi)的射影必為相交直線;
(3)底面是正多邊形,各側(cè)棱長(zhǎng)都相等的棱錐是正棱錐;
(4)底面是正方形,有兩個(gè)側(cè)面是矩形的四棱柱是正四棱柱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:S為R的真子集,?x,y∈S,若x+y∈S,x-y∈S,則稱(chēng)S對(duì)加減法封閉.有以下四個(gè)命題,請(qǐng)判斷真假:
①自然數(shù)集對(duì)加減法封閉;
②有理數(shù)集對(duì)加減法封閉;
③若有理數(shù)集對(duì)加減法封閉,則無(wú)理數(shù)集也對(duì)加減法封閉;
④若S1,S2為R的兩個(gè)真子集,且對(duì)加減法封閉,則必存在c∈R,使得c∉S1∪S2;
四個(gè)命題中為“真”的是
②④
②④
.(填寫(xiě)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
①兩直線m,n與平面α所成的角相等的充要條件是m∥n;
②若p:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個(gè)函數(shù)y=x-1,y=x
1
3
,y=x
1
2
,y=x3
,其中在R上是增函數(shù)的函數(shù)有3個(gè).
其中真命題的序號(hào)是
②③
②③
.(漏填、多填或錯(cuò)填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•棗莊一模)有以下四個(gè)命題:
①若x,y∈R,i為虛數(shù)單位,且(x-2)i-y=-1+i,則(1+i)x+y的值為-4;
②將函數(shù)f(x)=cos(2x+
π
3
)+1的圖象向左平移
π
6
個(gè)單位后,對(duì)應(yīng)的函數(shù)是偶函數(shù);
③若直線ax+by=4與圓x2+y2=4沒(méi)有交點(diǎn),則過(guò)點(diǎn)(a,b)的直線與橢圓
x2
9
+
y2
4
=1有兩個(gè)交點(diǎn);
④在做回歸分析時(shí),殘差圖中殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越。
其中所有正確命題的序號(hào)為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題
(1)垂直于同一平面的兩直線平行
(2) 若直線a、b為異面直線,則過(guò)空間中的任意一點(diǎn)P一定能做一條直線與直線a和直線b均相交
(3) 如果一條直線與平面平行,則它與平面內(nèi)的任何直線平行.
(4)如果一條直線垂直于一個(gè)平面,那么這條直線與這個(gè)平面內(nèi)的任何直線垂直.
其中真命題有幾個(gè)(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案