已知函數(shù),x∈[0,2π],則當x=    時,函數(shù)f(x)有最大值,最大值為   
【答案】分析:先根據二倍角公式化簡原函數(shù);再根據分段函數(shù)最大值的求法,求出每一段的最大值,最后比較即可得到答案.
解答:解:∵函數(shù)
=+
=2|sin|+2|sin()|
=
=
=⇒x=時,y=2sin()有最大值2;
=⇒x=時,y=2sin()有最大值2
∴當x=時,函數(shù)f(x)有最大值2
故答案為:,2
點評:本題主要考查三角函數(shù)的化簡求值以及分段函數(shù)的最值求法.分段函數(shù)的最值求法是先分段找,最后在綜合即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
0  x∈{x|x=2n+1,n∈Z}
1  x∈{x|x=2n,n∈Z}
,求f(f(-3))的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
0,x<0
π,x=0
x+1,x>0
,則f{f[f(-1)]}=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
數(shù)列{an}滿足an=f(n)(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設x軸、直線x=a與函數(shù)y=f(x)的圖象所圍成的封閉圖形的面積為S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整數(shù)N,使得不等式an-1005>S(n)-S(n-1)對一切n>N恒成立?若存在,則這樣的正整數(shù)N共有多少個?并求出滿足條件的最小的正整數(shù)N;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
0(x>0)
-1 (x=0)
x2+1 (x<0)
則f{f[f(2)]}=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
0,x=0
|lg|x||,x≠0
,則方程f2(x)-f(x)=0的實根的個數(shù)是
7
7

查看答案和解析>>

同步練習冊答案