如圖,用A、B、C三類不同的無件連接成兩個系統(tǒng)N1、N2,當元件A、B、C都正常工作時,系統(tǒng)N1正常工作;當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N2正常工作.已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90;分別求系統(tǒng)N1、N2正常工作的概率P1、P2
解:分別記元件A、B、C正常工作為事件A、B、C,
由已知條件 P(A)=0.80,P(B)=0.90,P(C)=0.90,
(Ⅰ)因為事件A、B、C是相互獨立的,
所以,系統(tǒng)N1正常工作的概率
P1=P(A·B·C)=P(A)·P(B)·P(C)=0.80×0.90×0.90=0.648,
故系統(tǒng)N1正常工作的概率為0.648;
(Ⅱ)系統(tǒng)N2正常工作的概率
 ,

故系統(tǒng)N2正常工作的概率為0.792。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、如圖,用A,B,C三個不同的元件連接成一個系統(tǒng)N.當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N正常工作.已知元件A,B,C正常工作的概率依次為0.8,0.85,0.9,則系統(tǒng)N能正常工作的概率等于
0.788

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分別為AA1,B1C的中點,若記
AB
=
a
,
AC
=
b
AA
=
c
,則
DE
=
1
2
a
+
1
2
b
1
2
a
+
1
2
b
(用
a
,
b
,
c
表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三個城市分別位于A,B,C三點處(如圖),且AB=AC=20
2
km,BC=40km.今計劃合建一個貨運中轉(zhuǎn)站,為同時方便三個城市,準備建在與B、C等距離的O點處,并修建道路OA,OB,OC.記修建的道路的總長度為ykm.
(Ⅰ)設OA=x(km),或OB=x(km),或點O到BC的距離為x(km),或∠CBO=x(rad).請你選擇用其中的某個x,將y表示為x的函數(shù);
(Ⅱ)由(Ⅰ)中建立的函數(shù)關系,確定貨運中轉(zhuǎn)站的位置,使修建的道路的總長度最短.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

斜三棱柱OAB-CA1B1,其中向量
OA
=
a
,
OB
=
b
,
OC
=
.
c
,三個向量之間的夾角均為
π
3
,點M,N分別在CA1,BA1上且
CM
=
1
2
MA1
,
BN
=
NA1
,|
OA
|=2,|
OB
|=2,
|OC|
=4,如圖
(1)把向量
AM
用向量
a
,
c
表示出來,并求|
AM
|
;
(2)把向量
ON
a
b
,
c
表示;
(3)求AM與ON所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,用A,B,C三個不同的元件連接成一個系統(tǒng)N.當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N正常工作.已知元件A,B,C正常工作的概率依次為0.8,0.85,0.9,則系統(tǒng)N能正常工作的概率等于________.

查看答案和解析>>

同步練習冊答案