如圖,⊙O中弦AB,CD相交于點P,已知AP=3,BP=2,CP=1,則DP=(  )
精英家教網(wǎng)
A、3B、4C、5D、6
分析:根據(jù)相交弦定理“圓內(nèi)兩弦相交于圓內(nèi)一點,各弦被這點所分得的兩線段的長的乘積相等”進(jìn)行計算.
解答:解:由相交弦定理得:
PA•PB=PC•PD,
∴DP=
PA•PB
PC
=
3×2
1
=6.
故選D.
點評:本題主要考查相交弦定理“圓內(nèi)兩弦相交于圓內(nèi)一點,各弦被這點所分得的兩線段的長的乘積相等”的應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O中的弦CD與直徑AB相交于點E,M為AB延長線上一點,MD為⊙O的切線,D為切點,若AE=2,DE=4,CE=3,DM=4,則OB=
 
,MB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,DE交AB于點F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應(yīng)變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點O與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合,
曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點.求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)如圖,⊙O中的弦AB與直徑CD相交于P,M為DC延長線上一點,MN為⊙O的切線,N為切點,若AP=8,PB=6,PD=4,MC=6,則MN的長為
2
33
2
33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•薊縣二模)如圖,⊙O中的弦AB與直徑CD相交于點P,M為DC延長線上一點,MN為⊙O的切線,N為切點,若AP=2BP=4,PC=1,MN=6,則MC的長為
3
3

查看答案和解析>>

同步練習(xí)冊答案