有幾個(gè)圓,任意兩個(gè)圓都相交于兩點(diǎn),任意三個(gè)圓不相交于同一點(diǎn),求證這幾個(gè)圓將平面分成f(n)=n2-n+2個(gè)部分.(n∈N+

思路分析:因?yàn)閒(n)為n個(gè)圓把平面分割成的區(qū)域數(shù),那么再有一個(gè)圓和這n個(gè)圓相交,就有2n個(gè)交點(diǎn),這些交點(diǎn)將增加的這個(gè)圓分成2n段弧,且每一段弧又將原來的平面區(qū)域一分為二,因此,增加一個(gè)圓后,平面分成的區(qū)域數(shù)增加2n個(gè),即f(n+1)=f(n)+2n.

有了上述關(guān)系,數(shù)學(xué)歸納法的第二步證明可迎刃而解.

證明:(1)當(dāng)n=1時(shí),一個(gè)圓將平面分成兩個(gè)部分,且f(1)=1-1+2=2,所以n=1時(shí)命題成立.

(2)假設(shè)n=k(k≥1)時(shí)命題成立,即k個(gè)圓把平面分成f(k)=k2-k+2個(gè)部分.

則n=k+1時(shí),在k+1個(gè)圓中任取一個(gè)圓O,剩下的k個(gè)圓將平面分成f(k)個(gè)部分,而圓O與k個(gè)圓有2k個(gè)交點(diǎn),這2k個(gè)點(diǎn)將圓O分成2k段弧,每段弧將原平面一分為二,故得f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2.

∴當(dāng)n=k+1時(shí),命題成立.

綜上(1)(2)可知,對(duì)一切n∈N+,命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P到x軸的距離比它到點(diǎn)(0,1)的距離小1,稱點(diǎn)P的軌跡為曲線C,點(diǎn)M為直線l:y=-m (m>0)上任意一點(diǎn),過點(diǎn)M作曲線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
(1)求曲線C的軌跡方程;
(2)當(dāng)M的坐標(biāo)為(0,-l)時(shí),求過M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程,并判斷直線l與此圓的位置關(guān)系;
(3)當(dāng)m變化時(shí),試探究直線l上是否存在點(diǎn)M,使MA⊥MB?若存在,有幾個(gè)這樣的點(diǎn),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

平面上有n個(gè)圓,其中任意兩圓都相交,任意三圓不共點(diǎn),試推測n個(gè)圓把平面分為幾部分?用數(shù)學(xué)歸納法證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

平面上有n個(gè)圓,其中任意兩圓都相交,任意三圓不共點(diǎn),試推測n個(gè)圓把平面分為幾部分?用數(shù)學(xué)歸納法證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-4-5人教A版 人教A版 題型:047

有幾個(gè)圓,任意兩個(gè)圓都相交于兩點(diǎn),任意三個(gè)圓不相交于同一點(diǎn),求證這幾個(gè)圓將平面分成f(n)=n2-n+2個(gè)部分.(n∈N+)

查看答案和解析>>

同步練習(xí)冊(cè)答案