精英家教網 > 高中數學 > 題目詳情
已知數列{an}中a1=1,且點(an,an+1)(n∈N*)在函數y=x+1的圖象上.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足bn=
an   (n為奇數)
2n(n為偶數)
(n∈N*),求數列{bn}的前n項和Sn
(1)由已知可得,an+1-an=1
∴數列{an}是以1為首項,以1為公差的等差數列
∴an=n
(2)由已知可得,bn=
n,n為奇數
2n,n為偶數

①當n為偶數時,sn=b1+b2+…+bn-1+bn
=(b1+b3+…+bn-1)+(b2+b4+…+bn
=
[1+(n-1)]•
n
2
2
+
4(1-4
n
2
)
1-4

=
n2
4
+
4(2n-1)
3

②n為奇數時,Sn=b1+b2+…+bn-1+bn
=(b1+b3+…+bn)+(b2+b4+…+bn-1
=
(1+n)•
n+1
2
2
+
4(1-4
n-1
2
)
1-4

=
(n+1)2
4
+
4
3
(2n-1-1)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=-10,且經過點A(an,an+1),B(2n,2n+2)兩點的直線斜率為2,n∈N*
(1)求證數列{
an2n
}
是等差數列,并求數列{an}的通項公式;
(2)求數列{an}的最小項.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,an=3n+4,若an=13,則n等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1為由曲線y=
x
,直線y=x-2及y軸
所圍成圖形的面積的
3
32
Sn為該數列的前n項和,且Sn+1=an(1-an+1)+Sn
(1)求數列{an}的通項公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
對一切正整數n都成立,求正整數a的最大值,并證明結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an對任意x∈N*恒成立,則實數λ的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是( 。

查看答案和解析>>

同步練習冊答案